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Orbits of points under polynomials

Our basic set-up:

I C is the usual complex numbers;

I f (x) is a polynomial of degree ≥ 2 in C[x ];

I We let f n denote f composed with itself n times, i.e.,
f n = f ◦ · · · ◦ f︸ ︷︷ ︸

n times

;

I for α ∈ C we define the orbit Orbf (α) of α under f as

{α, f (α), f 2(α), . . . , f n(α), . . . } =
∞⋃

n=0

f n(α),

e.g. let f (x) = x2 + 1 and α = 0, then

Orbf (0) = {0, 1, 2, 5, 26, 677, . . . };

I Let’s suppose further that Orbf (α) is infinite (in dynamical
terminology this means that α is not preperiodic).
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A question

We begin with an ill-posed question.

Question
Is f uniquely determined by Orbf (α)?

A bit more precisely.

Question
Let f , g ∈ C[x ] each be polynomials of degree ≥ 2. Let α, β ∈ C.
When can

Orbf (α) ∩ Orbg (β) be infinite?
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A more precise question

To answer these questions, we’ll start with an example.

Example

Suppose that there exist positive integers m and n such that
f m = gn (we say in this case that f and g have a common
iterate). Then, of course, we have f m(α) = gn(α) so clearly the
intersection Orbf (α) ∩ Orbg (α) is infinite for any choice of α (as
long as α is not preperiodic).

We can show this is essentially the only way Orbf (α) ∩ Orbg (α)
can be infinite. But ruling out the case of common iterates, we
have the following theorem.

Theorem 1
(Ghioca-T-Zieve, 2008) Let f , g ∈ C[x ] be polynomials of degree 2
or more. Let α, β ∈ C. If Orbf (α) ∩ Orbg (β) is infinite, then there
exists positive integers m and n such that f m = gn.
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Sketch of a proof of Theorem 1

Theorem 1 is proved using number theory.

The idea is that since it only involves α, β, and the coefficients of
f and g , it all takes place in a finitely generated extension of Z,
which allows one to reduce the entire problem to the case where f ,
g , α, and β are all in Z (technically, they are in finite extensions of
Q with bounded denominators, but all the theorems there are the
same).

The rough idea is that if there are infinitely many `, and k such
that f k(α) = g `(β), then for all r , s there are infinitely many
integer solutions to the equation

f r (x)− g s(y) = 0

(we obtain these by taking x = f `−r (α) and y = gk−s(β) for
various k and `).
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Sketch of a proof of Theorem 1 (continued)

Siegel’s theorem, as developed by Bilu and Tichy, says that in
general equations of the form

P(x)− Q(y) = 0

may only have infinitely many integer solutions under very special
circumstances.

Roughly, one expects this to happen only when
there is a polynomial h(x , y) of degree 1 or 2 such that h(x , y)
divides P(x)− Q(y). One obvious way for this to happen is to
have P = Q since

(x − y) divides P(x)− P(y).

Theorem 1 is proved by showing that the only way there can be
infinitely many solutions to

f r (x)− g s(y) = 0

for all r , s is to have f m = gn for some m and n.
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A geometric approach

We may think of each (f i , g j) as acting on C× C by

(f i , g j)(α, β) = (f i (α), g j(β))

Let ∆ be the diagonal in C× C, that is the set of all
{(a, a) | a ∈ C}. Then

I f i (α) = g j(β) ⇐⇒ (f i (α), g j(β)) ∈ ∆;

I f m = gn ⇐⇒ (f m, gn)(∆) = ∆.

Thus, Theorem 1 implies that if there are infinitely many i , j such
that f i (α) = g j(β), then there is some m, n such that
(f m, gn)(∆) = ∆. This gives the following reformulation of
Theorem 1.
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Reformulating Theorem 1

Theorem 1 can be reformulated in a way that suggests possible
generalizations.

Theorem
The set of pairs (i , j) such that (f i (α), g j(β)) ∈ ∆ is a finite union
of cosets of subsemigroups of N0 × N0, where N0 is the additive
semigroup of nonnegative integers.

Example

Let f (x) = x2 and g(x) = −x4. Let α = 3, β = −9. Then we
have f 4 = g2 and f 3(α) = g(β), so the set of (m, n) is the set of
all (m, n) of the form (3 + 4k, 1 + 2k) for k a nonnegative integer.
This is a coset of the subsemigroup consisting of all pairs (4k, 2k).
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Mordell-Lang theorem

This reformulation on the previous page (which motivated
Theorem 1) was motivated by the so-called Mordell-Lang theorem
of Laurent, Faltings, Vojta, and McQuillan. We state the earliest
form of it, due to Laurent.

Theorem ML
Let V be a closed subvariety of (C∗)n and let Γ ⊂ (C∗)n be a
finitely generated subgroup. Then V (C) ∩ Γ is a finite union of
cosets of subgroups of Γ.

Viewing Γ as a group of multiplicative translations of (C∗)n, we
obtain something very similar to the reformulation of Theorem 1.
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A side note about the usual Mordell conjecture

The usual Mordell conjecture is a consequence of a more general
Mordell-Lang theorem for semiabelian varieties. Recall:

Theorem
(Mordell conjecture 1922, Faltings’s theorem 1983) If C is a curve
of genus ≥ 2, then there are finitely many rational points on C.

One derives the usual Mordell conjecture from Mordell-Lang as
follows

I Embed C into its Jacobian (which is a semiabelian variety).

I If C contains infinitely many points, then it contains an
infinite coset of rational points.

I Translating the curve, we obtain an infinite subgroup in C .

I Taking the closure of this subgroup we get a group structure
on C , we would get a group structure on C , but there can be
none when the genus is ≥ 2.
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I Taking the closure of this subgroup we get a group structure
on C , we would get a group structure on C , but there can be
none when the genus is ≥ 2.



Varieties

Definition
Let Pn

K be projective space over a field K . We say that Z is a
projective variety in Pn

K if there are polynomials
F1, . . . ,Fk ∈ K [x0, . . . , xn] such that

Z = {(x0, . . . , xn) ∈ Pn | F1(x0, . . . , xn) = · · · = Fk(x0, . . . xn) = 0}.

We say that X is a quasiprojective variety if it is the intersection of
a projective variety in Pn with the complement of a closed
projective variety in Pn (in other words, an open subset o a closed
variety) We will drop the “quasiprojective” descriptor and just say
“variety”. We say that V is a closed subvariety of a
(quasiprojective) variety X if V is the intersection of X with a
projective variety.

Note that Cn, for example, is a variety since it is obtained from Pn

as the complement of they hyperplane at infinity.



Varieties

Definition
Let Pn

K be projective space over a field K . We say that Z is a
projective variety in Pn

K if there are polynomials
F1, . . . ,Fk ∈ K [x0, . . . , xn] such that

Z = {(x0, . . . , xn) ∈ Pn | F1(x0, . . . , xn) = · · · = Fk(x0, . . . xn) = 0}.

We say that X is a quasiprojective variety if it is the intersection of
a projective variety in Pn with the complement of a closed
projective variety in Pn (in other words, an open subset o a closed
variety) We will drop the “quasiprojective” descriptor and just say
“variety”.

We say that V is a closed subvariety of a
(quasiprojective) variety X if V is the intersection of X with a
projective variety.

Note that Cn, for example, is a variety since it is obtained from Pn

as the complement of they hyperplane at infinity.



Varieties

Definition
Let Pn

K be projective space over a field K . We say that Z is a
projective variety in Pn

K if there are polynomials
F1, . . . ,Fk ∈ K [x0, . . . , xn] such that

Z = {(x0, . . . , xn) ∈ Pn | F1(x0, . . . , xn) = · · · = Fk(x0, . . . xn) = 0}.

We say that X is a quasiprojective variety if it is the intersection of
a projective variety in Pn with the complement of a closed
projective variety in Pn (in other words, an open subset o a closed
variety) We will drop the “quasiprojective” descriptor and just say
“variety”. We say that V is a closed subvariety of a
(quasiprojective) variety X if V is the intersection of X with a
projective variety.

Note that Cn, for example, is a variety since it is obtained from Pn

as the complement of they hyperplane at infinity.



Varieties

Definition
Let Pn

K be projective space over a field K . We say that Z is a
projective variety in Pn

K if there are polynomials
F1, . . . ,Fk ∈ K [x0, . . . , xn] such that

Z = {(x0, . . . , xn) ∈ Pn | F1(x0, . . . , xn) = · · · = Fk(x0, . . . xn) = 0}.

We say that X is a quasiprojective variety if it is the intersection of
a projective variety in Pn with the complement of a closed
projective variety in Pn (in other words, an open subset o a closed
variety) We will drop the “quasiprojective” descriptor and just say
“variety”. We say that V is a closed subvariety of a
(quasiprojective) variety X if V is the intersection of X with a
projective variety.

Note that Cn, for example, is a variety since it is obtained from Pn

as the complement of they hyperplane at infinity.



Dynamical Mordell-Lang question

Question DML
Let X be a variety defined over C, let V be a closed subvariety of
X , and let S be a finitely generated commutative semigroup of
maps from V to itself, and let α ∈ X (C). Can the set

{σ ∈ S | σ(α) ∈ V }

be written as a finite union of cosets of subsemigroups of S?

The answer is “no” in general, as we shall see.
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Counterexample

The simplest counterexample may be the following.

Example

Let X be C2 and let S be the group of translations generated by:

σ1(a, b) = (a + 1, b)

and
σ2(a, b) = (a, b + 1)

Let α = (0, 0) and let V be a curve coming from a Pell’s equation:

x2 − dy2 = 1 for some square-free positive integer d .

Then it is known that there are infinitely many integer solutions
(m, n) to m2 − dn2 = 1, but they do not form a finite set of cosets
of subgroups of S .

Thus, we say that the dynamical Mordell-Lang question has a
negative answer for groups of additive translations.
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Linear algebra

Question DML has a complicated answer even in the the case
where S is a finitely generated group of n × n matrices acting on
Cn.

Let’s start with an example where the dynamical Mordell-Lang
question has a positive answer.

Example

Let S be a group of matrices in GLn(C) and let V be
one-dimensional subspace of Cn (i.e., a line through the origin).
Then if α ∈ Cn and L is the line through α in Cn, we let SL is the
subgroup of matrices σ ∈ S such that σ(L) = L.

Then the set of τ ∈ S such that τ(α) ∈ V is simply a left coset

aSL

of SL for some a ∈ S , by basic group orbit theory (this works even
S is not commutative or finitely generated, in fact!).
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Linear algebra continued

Moreover, it follows from Laurent’s theorem that if the matrices
are all simultaneously diagonalizable then the dynamical
Mordell-Lang question is true, since diagonalizable matrices act
like multiplicative translations – this will work for any closed
subvariety V .

However, when they are not diagonalizable, there are
counterexamples (due to Ghioca) even for fairly simple V .

Example

Let X = C3, let V be the subspace given by the yz-plane, i.e. the
set of all {0, y , z}, and let S be the group generated by the

matrices

 2 −1 0
0 2 −2
0 0 2

 and

 2 2 0
0 2 4
0 0 2

. The dynamical

Mordell-Lang question has a negative answer here.
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The cyclic case

When the semigroup S is generated by a single element, then the
dynamical Mordell-Lang question is believed to have a positive
answer. Here are some cases that have been proved.

I Φ is any unramified map (Bell-Ghioca-T, following work of
Denis, Cutkosky/Srinivas).

I Φ takes the form

(f , . . . , f ) : Qg −→ Qg

where f ∈ Q[x ] is quadratic and α ∈ Qn (due to
Benedetto-Ghioca-Kurlberg-T).

I Φ takes the form

(f , . . . , f ) : Cg −→ Cg

where f is an indecomposable polynomial with no periodic
critical points and the subvariety V is a curve (also due to
B-G-K-T).
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The method of Skolem-Mahler-Lech

All of the work from the previous page uses the method p-adic
analytic method of Skolem-Mahler-Lech, which was originally used
to treat linear recurrence sequences.

It makes use of the p-adic
absolute value on Z, which is defined by |m|p = p−s where s is the
highest power of p that divides m. In other words, the more
divisible by p a number is, the “smaller” that number is in the
p-adic metric.

The p-adic absolute value gives rise to a metric on all of Q, and to
a complete, algebraically closed field Cp that is the p-adic analog
of the complex numbers. One can do analysis in the usual sense on
Cp, and crucially:

Z is in the closed unit disc in Cp.
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p-adic analytic parametrization

We show that there is a prime p and a modulus m such that for
each congruence class i modulo m, there is a p-adic analytic map

θi : Dp −→ X (C) such that θi (k) = Φ`+i+mk(α)

where Dp is the closed disc of radius 1 in Cp (note that this disc
contains Z!).

Then for each polynomial F that vanishes on V , we have

F (θi (k)) = 0 whenever Φi (α) ∈ V .

Since F (θi (k)) is an analytic function of one variable, its zeros are
isolated. Thus, if there are infinitely many k such that
F (θi (k)) = 0, then F (θi (k)) = 0 for all k.

This produces the coset

{`, ` + m, . . . , ` + km, . . . } = ` + mN0.

Note that this is also a “linearizing” technique that is analogous to
taking logs on a Lie group.
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When does p-adic parametrization work?

We can apply the p-adic parametrization for cyclic S method
whenever some iterate of α ends up in a residue class β̄ modulo p
such that:

I β̄ is periodic modulo p (i.e., there is some power Φm of Φ
such that Φm sends β̄ to itself);

I X is nonsingular at β̄ modulo p;

I Φ does not ramify at β̄ modulo p.

For those who have seen logarithms of Lie groups, the above
conditions mean that Φ behaves like the multiplication-by-m map
near the identity on a Lie group.

Of these conditions, the one about ramification is the most serious
restriction (this is why the most general case treated so far is the
case where this is no ramification).
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Avoiding ramification modulo p

To give the flavor of the difficulties with avoiding ramification
modulo primes p, here’s a simple question we are not able to
answer.

Recall that if f ∈ C[x ] is a polynomial, the map
f : C −→ C ramifies at the critical points of f , that is the γ ∈ C
such that f ′(γ) = 0.

Question
Let f ∈ Q[x ] be a polynomial of degree ≥ 2 and let α ∈ Q be a
point such that Orbf (α) does not meet the critical points of f . For
what proportion of primes p is there an n such that f n(α) is
congruent to a critical point of f modulo p?

We believe that the answer is “zero”. In the case of quadratic
polynomials, R. Jones and M. Stoll have proved this. An
incomplete answer to this question gave rise to the results on maps
of the form (f , . . . , f ) described earlier. Getting a good answer to
this question in general would be a good first step towards solving
the dynamical Mordell-Lang problem in the cyclic case.
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We believe that the answer is “zero”. In the case of quadratic
polynomials, R. Jones and M. Stoll have proved this. An
incomplete answer to this question gave rise to the results on maps
of the form (f , . . . , f ) described earlier. Getting a good answer to
this question in general would be a good first step towards solving
the dynamical Mordell-Lang problem in the cyclic case.
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More on avoiding points modulo p

Just to make this even more concrete.

Question
Let f ∈ Z[x ] be a polynomial of degree ≥ 2 and let α, β ∈ Z be
points such that there is no n ≥ 0 for which f n(α) = β. What can
be said about the set S primes p such that there is an n such that
f n(α) = β modulo p?

I One expects that typically S has density 0.

I There are special cases where S does not have density 0, such
as when f (x) = x3 + 1 and α = β (In this case, S contains all
primes that are congruent to 2 modulo 3, since f is
permutation modulo p for such p.)

I The only thing we can prove in general for now is that there
are infinitely many primes such that there is no n such that
f n(α) = β. In other words, there are finitely many primes p
that are not in S. (The proof of this uses Roth’s theorem,
which seems like overkill).
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State of current progress

The p-adic parametrization technique will not work when the
semigroup has rank higher than one, since analytic functions in
more than one variable can have more complicated zero sets

(note:
those familiar with the Chabauty method might think it would
work for any rank less than the dimension of the ambient variety,
but that does not work here).

To summarize:

I p-adic parametrization only works when S is generated by
single element

I The Siegel’s theorem method (from the beginning) only works
when the subvariety V is a curve.

So new ideas are needed.



State of current progress

The p-adic parametrization technique will not work when the
semigroup has rank higher than one, since analytic functions in
more than one variable can have more complicated zero sets (note:
those familiar with the Chabauty method might think it would
work for any rank less than the dimension of the ambient variety,
but that does not work here).

To summarize:

I p-adic parametrization only works when S is generated by
single element

I The Siegel’s theorem method (from the beginning) only works
when the subvariety V is a curve.

So new ideas are needed.



State of current progress

The p-adic parametrization technique will not work when the
semigroup has rank higher than one, since analytic functions in
more than one variable can have more complicated zero sets (note:
those familiar with the Chabauty method might think it would
work for any rank less than the dimension of the ambient variety,
but that does not work here).

To summarize:

I p-adic parametrization only works when S is generated by
single element

I The Siegel’s theorem method (from the beginning) only works
when the subvariety V is a curve.

So new ideas are needed.



State of current progress

The p-adic parametrization technique will not work when the
semigroup has rank higher than one, since analytic functions in
more than one variable can have more complicated zero sets (note:
those familiar with the Chabauty method might think it would
work for any rank less than the dimension of the ambient variety,
but that does not work here).

To summarize:

I p-adic parametrization only works when S is generated by
single element

I The Siegel’s theorem method (from the beginning) only works
when the subvariety V is a curve.

So new ideas are needed.



State of current progress

The p-adic parametrization technique will not work when the
semigroup has rank higher than one, since analytic functions in
more than one variable can have more complicated zero sets (note:
those familiar with the Chabauty method might think it would
work for any rank less than the dimension of the ambient variety,
but that does not work here).

To summarize:

I p-adic parametrization only works when S is generated by
single element

I The Siegel’s theorem method (from the beginning) only works
when the subvariety V is a curve.

So new ideas are needed.



Pure speculation

There are a few ideas about how to modify the dynamical
Mordell-Lang question to make it have a positive answer.

One is to use the fact that the p-adic parameterizations maps
convert the various elements of the semigroup into their Jacobian
matrices. Then one could ask that the theorem be true when the
Jacobian matrices are simultaneously diagonalizable.
That seems a bit limited, though.
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More speculation

Let’s think back on our two counterexamples:

1. The Pell equation x2 − dy2 = 1 under additive translation of
the Cartesian plane.

2. The subspace x = 0 under the action of a group of matrices.

Here is one explanation for what goes wrong. To be concrete let’s
restrict to d = 3 for 1.

1. The Pell’s equation curve x2 − 3y2 = 1 is stable under the
action of the map σ : (x , y) −→ (2x + 3y , 2y + x), which
“almost” commutes with additive translation.

2. The subspace x = 0 is stable under scalar multiplication,
which does commute with the action of any matrix.
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More speculation (continued)

Recall that the cosets that appear in the dynamical Mordell-Lang
theorem correspond to stabilizer groups of various subvarieties of
the variety V .

In our counterexamples, there is no (nontrivial) subgroup that
stabilizes our varieties.

Idea. All of our counterexamples coming from having other maps
that stabilize the subvarieties in question. These morphisms bear
some relation (i.e., commuting or almost commuting) with our
original semigroups.

This may give a way towards a statement of a general dynamical
Mordell-Lang theorem.
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