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EQUIDISTRIBUTION AND INTEGRAL POINTS
FOR DRINFELD MODULES

D. GHIOCA AND T. J. TUCKER

Abstract. We prove that the local height of a point on a Drinfeld module
can be computed by averaging the logarithm of the distance to that point over
the torsion points of the module. This gives rise to a Drinfeld module analog
of a weak version of Siegel’s integral points theorem over number fields and
to an analog of a theorem of Schinzel’s regarding the order of a point modulo
certain primes.

1. Introduction

In 1929, Siegel ([Sie29]) proved that if C is an affine curve defined over a number
field K and C has at least three points at infinity, then there are finitely many
K-rational points with integral coordinates. The proof of this famous theorem uses
diophantine approximation along with the fact that certain groups of rational points
are finitely generated; when C has genus greater than 0, the group in question is
the Mordell-Weil group of the Jacobian of C, while when C has genus 0, the group
in question is the group of S-units in a finite extension of K.

When C is a curve of genus 0, it is simple to give a notion of integrality that
is more flexible than the notion of integral coordinates. Let S be a finite set of
places of K. Viewing P1(K) as K plus a point at infinity, we say that β ∈ K is
S-integral with respect to α ∈ K if at each finite place v of K outside of S, we have
|α − β|v ≥ 1 and min(|α|v, |β|v) ≤ 1 (see Section 2.6 for a more precise definition
of S-integrality). Similarly, we say that β is S-integral with respect to the point at
infinity if |β|v ≤ 1 for all points outside of S. Using these conventions, along with
the convention of the usual Weil height h(α) of an algebraic number α, Siegel’s
method of proof can be described very easily. The set of points β that are integral
with respect to any two points in P1

K can be realized as a subset of the group Γ of
S-units in some extension L of K. Since Γ/mΓ is finitely generated, if α is another
point (making a total of three) for which there are infinitely many βi ∈ Γ that
are integral with respect to α, then there is some γ ∈ Γ such that infinitely many
γ + βi have m-th roots β′

i in L. The fact that the βi are S-integral with respect to
α means that

∑
v∈S − log |βi − α|v = h(β) + O(1) for all β. Then there is an m-th
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root α′ of α + γ, and infinitely many m-th roots β′
i ∈ L of βi + γ such that

∑

v∈S

− log |β′
i − α′|v =

∑

v∈S

− log |βi − α|v + O(1) = h(βi) + O(1)

= mh(β′
i) + O(1),

which violates a theorem from diophantine approximation, such as Roth’s theorem
([Rot55]) or Siegel’s own result, also found in [Sie29].

Now, suppose that the base field of our curves is a function field K over a finite
field. When C is a nonisotrivial curve of positive genus, Siegel’s theorem is still
true (see [Vol90] and [Vol91]), but Siegel’s theorem is not true for the projective line
with three points removed. For example, let K be any function field over a finite
field (of characteristic p) and let x be any point in K that is not in the constant
field. Let S be the set of places for which either |x|v %= 1 or |x − 1|v %= 1. Then
any power of x is S-integral with respect to both 0 and ∞ and, since |xpm − 1|v =
|(x − 1)pm |v = |x − 1|pm

v for any positive integer m, we see that xpm
is S-integral

with respect to 1 as well. Note that the diophantine approximation results over
function fields are much weaker than Roth’s (or Siegel’s or Dyson’s) theorem (see
[Vol97] or [Osg75], for example).

In this paper we will prove an analog of Siegel’s theorem for cyclic φ-submodules
of Ga(K) (under the action of a Drinfeld module φ). In some sense this is surprising
in light of the counterexample above for Z-submodules of Gm(K). On the other
hand, there are many other famous theorems over number fields that have analogs
in characteristic p in the context of Drinfeld modules. For example, Ghioca [Ghi05]
and Scanlon [Sca02] proved Mordell-Lang and Manin-Mumford statements, respec-
tively, for Drinfeld modules; these had both been conjectured by Denis ([Den92a]).
Bosser formulated and proved ([Bos00]) a variant of the Bogomolov conjecture for
Drinfeld modules (unpublished, but the main ingredient of his result is contained
in [Bos02]). Ghioca ([Ghi06]) proved a Drinfeld module analog of Szpiro, Ullmo,
and Zhang’s equidistribution theorem ([SUZ97]) for abelian varieties. In this paper
we explore further aspects of equidistribution in the context of Drinfeld modules
and demonstrate a connection between equidistribution and integrality of points.

We will prove the following theorem.

Theorem 1.1. Let K be a finite extension of Fq(t). Let φ : Fq[t] → K{τ} be a
Drinfeld module and let S be a finite set of places of K. If β ∈ K is not torsion
for φ, then there are finitely many Q ∈ Fq[t] such that φQ(β) is S-integral for the
point 0.

We will derive Theorem 1.1 as a consequence of Theorem 3.1, which states that
the local height of a point β can be computed by averaging the function log |x−β|v
over the periodic points of φ. Theorem 3.1 can be regarded as an equidistribution
theorem, since local canonical heights can typically be computed by integrating
log |x− β|v against an invariant measure (see Section 5 for more details). Theorem
3.1 also gives rise to Theorem 4.1, which is a result about the order of the reduction
of a point modulo various primes. Determining the order of the reduction of a non-
torsion point at various primes was also studied in the context of abelian varieties
(see [Pin04]).

Let us now give a brief outline of the paper. We begin with some preliminaries
about canonical heights on Drinfeld modules in Section 2. Following that we prove
Theorem 3.1. The main ingredient for Theorem 3.1 is Corollary 3.13 which provides
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a new way of defining local canonical heights for a Drinfeld module. For the places
lying over the place at infinity for the Drinfeld module (see Section 2 for a more
precise definition of these places), this is proved using linear forms in logarithms
(as in [Bos99]); for the “finite” places, this is proved using an elementary method
described in Lemmas 3.10 and 3.12. Theorem 1.1 follows easily from Theorem
3.1. The proof of Theorem 4.1 requires a somewhat lengthy counting argument,
which is detailed in Section 4. In Section 5, we discuss further generalizations,
including analogs of work of Silverman ([Sil93]), Baker/Ih/Rumely ([BIR05]), and
Szpiro/Tucker ([ST]). The most general question we pose may be viewed as a pos-
sible Siegel’s integral points theorem for arbitrary finitely generated φ-submodules
of Ga(K). In a recent paper [GT07] we answer positively our question under one
mild technical hypothesis and also assuming a natural conjecture for linear forms
in logarithms at finite places for a Drinfeld module (which is the analog of Bosser’s
result [Bos99] for the linear forms in logarithms at infinite places).

2. Notation

2.1. Drinfeld modules. We begin by defining a Drinfeld module. Let p be a
prime and let q be a power of p. Let A := Fq[t], let K be a finite extension of
Fq(t), and let K be an algebraic closure of K. We let τ be the Frobenius on Fq,
and we extend its action on K. Let K{τ} be the ring of polynomials in τ with
coefficients from K (the addition is the usual addition, while the multiplication is
the composition of functions).

A Drinfeld module is a morphism φ : A → K{τ} for which the coefficient of τ0

in φ(a) =: φa is a for every a ∈ A, and there exists a ∈ A such that φa %= aτ0.
The definition given here represents what Goss [Gos96] calls a Drinfeld module of
“generic characteristic”.

We note that usually, in the definition of a Drinfeld module, A is the ring of
functions defined on a projective nonsingular curve C, regular away from a closed
point η ∈ C. For our definition of a Drinfeld module, C = P1

Fq
and η is the usual

point at infinity on P1. On the other hand, every ring of regular functions A as
above contains Fq[t] as a subring, where t is a nonconstant function in A.

A point α is torsion for the Drinfeld module action if and only if there exists
Q ∈ A\Fq such that φQ(α) = 0. The monic polynomial Q of minimal degree which
satisfies φQ(α) = 0 is called the order of α. Since each polynomial φQ is separable,
the torsion submodule φtor lies in the separable closure Ksep of K.

For every field extension K ⊂ L, the Drinfeld module φ induces an action on
Ga(L) by a∗x := φa(x), for each a ∈ A. We call φ-submodules subgroups of Ga(K)
which are invariant under the action of φ. As shown in [Poo95], Ga(K) is a direct
sum of a finite torsion φ-submodule with a free φ-submodule of rank ℵ0.

We will often use sums of the form
∑

P |Q over divisors P ∈ A of a fixed poly-
nomial Q ∈ A. These sums will always be taken over the monic divisors P of
Q.

2.2. Valuations and Weil heights. Let MFq(t) be the set of places on Fq(t). We
denote by v∞ the place in MFq(t) such that v∞( f

g ) = deg(g) − deg(f) for every
nonzero f, g ∈ A = Fq[t]. We let MK be the set of valuations on K. Then MK is a
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set of valuations which satisfies a product formula (see [Ser97, Chapter 2]). Thus
• for each nonzero x ∈ K, there are finitely many v ∈ MK such that |x|v %= 1;

and
• for each nonzero x ∈ K, we have

∏
v∈MK

|x|v = 1.
We may use these valuations to define a Weil height for each x ∈ K as

(2.0.1) h(x) =
∑

v∈MK

log max(|x|v, 1).

We may also extend the Weil height to all of K in a coherent way (see Chapter
2 of [Ser97] for a detailed discussion of the construction of heights on K). More
specifically, if L is an extension of K, then we can define a set ML of absolute values
| · |w on L such that

(2.0.2) |y|v =
∏

w|v
w∈ML

|y|w.

Note that we write w|v when | · |w restricts to some power of | · |v on K, but that
| · |w is not in general equal to | · |v on K (see [Ser97, pages 9-11]). We use these
| · |w to define a height for any y in a finite extension L of K by

(2.0.3) h(y) =
∑

w∈ML

log max(|y|w, 1).

It follows from (2.0.2), that for any x ∈ K and any extension L of K, we have

(2.0.4)
∑

v∈MK

log max(|x|v, 1) =
∑

w∈ML

log max(|x|w, 1).

Thus the height on all of K restricts to the original Weil height (2.0.1) on K. More
generally, the definition of h(y) in (2.0.3) does not depend on our choice of the field
L containing y. For more details, we refer the reader to [Ser97, Chapter 2].

Definition 2.1. Let L be a finite extension of K. Each place in ML that lies over
v∞ is called an infinite place. Each place in ML that does not lie over v∞ is called
a finite place.

2.3. Canonical heights. Let φ : A → K{τ} be a Drinfeld module of rank d (i.e.
the degree of φt as a polynomial in τ equals d). The canonical height of β ∈ K
relative to φ (see [Den92b]) is defined as

ĥ(β) = lim
n→∞

h(φtn(β))
qnd

.

Denis [Den92b] showed that α is a torsion point for φ if and only if ĥ(α) = 0.
For every finite extension L of K, and for every w ∈ ML, we let the local

canonical height of β ∈ L at w be

(2.1.1) ĥw(β) = lim
n→∞

log max(|φtn(β)|w, 1)
qnd

.

It is clear that
∑

w∈ML
ĥw(β) = ĥ(β).

We will use the notion of Galois conjugate for points β ∈ K. Even though this
notion is classical, for the sake of completeness, we define it here. If σ : K → K is
a field automorphism fixing K, then βσ := σ(β) is called a Galois conjugate of β.
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2.4. Completions and filled Julia sets. By abuse of notation, we let ∞ ∈ MK

denote any place extending the place v∞. We let K∞ be the completion of K with
respect to | · |∞. We let K∞ be an algebraic closure of K∞. We let C∞ be the
completion of K∞. Then C∞ is a complete, algebraically closed field. Note that
C∞ depends on our choice for ∞ ∈ MK extending v∞. However, each time we will
work with only one such place ∞, and so there will be no possibility of confusion.

Next, we define the w-adic filled Julia set Jφ,w corresponding to the Drinfeld
module φ and to each place w of ML (where L is any finite extension of K). Let
Cw be the completion of an algebraic closure of Lw. Then | · |w extends to a
unique absolute value on all of Cw. The set Jφ,w consists of all x ∈ Cw for which
{|φQ(x)|w}Q∈A is bounded. It is immediate to see that x ∈ Jφ,w if and only if
{|φtn(x)|w}n≥1 is bounded.

One final note on absolute values: as noted above, each place v ∈ MK extends
to a unique absolute value | · |v on all of Cv. We fix an embedding of i : K −→ Cv.
For x ∈ K, we denote |i(x)|v simply as |x|v, by abuse of notation.

2.5. The coefficients of φt. Each Drinfeld module is isomorphic to a Drinfeld
module for which all the coefficients of φt are integral at all the places in MK

which do not lie over v∞. Indeed, we let B ∈ Fq[t] be a product of all (the finitely
many) irreducible polynomials P ∈ Fq[t] with the property that there exists a place
v ∈ MK which lies over the place (P ) ∈ MFq(t), and there exists a coefficient of
φt which is not integral at v. Let γ be a sufficiently large power of B. Then
ψ : A → K{τ} defined by ψQ := γ−1φQγ (for each Q ∈ A) is a Drinfeld module
isomorphic to φ, and all the coefficients of ψt are integral away from the places
lying above v∞. Hence, from now on, we assume that all the coefficients of φt are
integral away from the places lying over v∞. It follows that for every Q ∈ A, all
coefficients of φQ are integral away from the places lying over v∞.

2.6. Integrality and reduction.

Definition 2.2. For a finite set of places S ⊂ MK and α ∈ K, we say that β ∈ K is
S-integral with respect to α if for every place v /∈ S, and for every pair of morphisms
σ, τ : K → K, the following are true:

• if |ατ |v ≤ 1, then |ατ − βσ|v ≥ 1.
• if |ατ |v > 1, then |βσ|v ≤ 1.

For more details about the definition of S-integrality, we refer the reader to
[BIR05].

We also introduce the notation β for the reduction at a place w ∈ ML of a point
β ∈ L, which is integral at w. When φ has good reduction at w (i.e. for each nonzero
Q ∈ Fq[t], all coefficients of φQ are w-adic integers, and the leading coefficient of
φQ is a w-adic unit), we denote by φ the reduction of φ at w. Note that when φ has
good reduction, φ is a well-defined Drinfeld module on Ga(kw) of the same rank as
φ, where kw is the residue field at w. When φ does not have good reduction at w,
we say that it has bad reduction at w. We observe that each place lying above v∞
is a place of bad reduction for φ.

The following fact is also proved in an equivalent form in [Ghi07a] (see Lemma
4.13).

Fact 2.3. Let w be a place of good reduction for φ, and let α ∈ Cw be a torsion
point for φ. Then α is a w-adic integer.
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Proof. Assume α is not a w-adic integer. Let Q ∈ Fq[t] be the order of α. Assume
φQ =

∑l
j=0 bjτ j . Then for every 0 ≤ j < l,

|blα
ql

|w = |αql

|w > |αqj

|w ≥ |bjα
qj

|w.

Hence |φQ(α)|w = |αql |w > 1, which contradicts φQ(α) = 0. !

3. Proofs of the main theorems

We continue with the notation as in Section 2. The main goal of this section is
to prove the following theorem. Then Theorem 1.1 will follow easily as a corollary.

Theorem 3.1. For any nontorsion β ∈ K and any nonzero irreducible F ∈ K[Z]
such that F (β) = 0, we have

(deg F )ĥ(β) =
∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0

log |F (y)|v.(3.1.1)

Later (see Theorem 3.14), we will prove a similar result as in Theorem 3.1 valid
also for torsion points β. Our proof of Theorem 3.1 will go through a series of
lemmas and propositions which ultimately yield a new way to compute local heights
(see Corollary 3.13). We will use in our argument a proposition proved by Bosser
(see Théorème 1.1 of [Bos99]) as well as a lemma due to Taguchi (see Lemma (4.2)
of [Tag93]).

Proposition 3.2 (Bosser). Let ∞ be a place lying over v∞. Let expφ be the
exponential map associated to φ at ∞ (see [Gos96]). Let y1, . . . , yn be elements
of C∞ such that expφ(yi) ∈ Ga(K). Then there exists a (negative) constant C1

(depending on φ, y1, . . . , yn) such that for any P1, . . . , Pn ∈ Fq[t], either P1y1 +
· · · + Pnyn = 0 or

log |P1y1 + · · · + Pnyn|∞ ≥ C1 max
1≤i≤n

(deg(Pi) log deg(Pi)).

Remark 3.3. In the translation of Théorème 1.1 of [Bos99] to our Proposition 3.2,
we use the fact that for each polynomial P ∈ Fq[t], its height is its degree.

Lemma 3.4 (Taguchi). Let expφ be the associated exponential map to φ with respect
to a fixed place ∞ lying over v∞. Let L be the lattice of all elements u ∈ C∞
such that expφ(u) = 0. There exists an A-basis ω1, . . . , ωd for L such that for any
polynomials P1, . . . , Pd ∈ Fq[t], we have

|P1ω1 + · · · + Pdωd|∞ = max
1≤i≤d

|Piωi|∞.

Remark 3.5. The elements ωi from Lemma 3.4 form a basis for L of “successive
minima” (as defined in [Tag93]).

The following result appears in a similar form in [Gos96] (see Proposition 4.14.2).

Lemma 3.6. With the notation as in Lemma 3.4, there exists a constant C2 > 0
such that expφ induces an isomorphism from the metric space B1 = {z ∈ Ga(C∞) |
|z|∞ ≤ C2} to itself.

Proof. As shown in [Gos96],

expφ(z) = z
∏

λ∈L
λ (=0

(1 − z

λ
).
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Because L is discrete in | · |∞, there exists C2 > 0 such that for every nonzero
λ ∈ L, we have |λ|∞ > C2. Thus, for each such λ, if |z|∞ ≤ C2, then |1− z

λ |∞ = 1.
Therefore, the ball

B1 := {z ∈ Ga(C∞) | |z|∞ ≤ C2}
is mapped by expφ into itself (preserving the distance). Moreover, expφ is injective
on B1 because L ∩ B1 = {0}. Finally, expφ : B1 → B1 is surjective as can easily
be seen by considering the entire function fα(z) := expφ(z) − α (for each α ∈ B1).
Then fα has a zero on B1 (see the first slope of its associated Newton polygon). !

Proposition 3.7. Let L be a finite extension of K, and let ∞ ∈ ML be a place
lying above v∞. Let β ∈ L be any nontorsion point for the Drinfeld module φ that
is in Jφ,∞. Then

lim
deg Q→∞

log |φQ(β)|∞
qd deg Q

= 0.

Proof. Let ε be any real number greater than zero. Since β is in the filled Julia set
of φ, we know that |φQ(β)|∞ is bounded, so

log |φQ(β)|∞
qd deg Q

< ε

when deg Q is sufficiently large.
Now, if log |φQ(β)|∞

qd deg Q < −ε for deg(Q) sufficiently large, then we have |φQ(β)|∞ <
C2 where C2 is as in Lemma 3.6. We will use Proposition 3.2 to derive a contradic-
tion. First, we let u ∈ C∞ such that expφ(u) = β. We also choose a basis ω1, . . . , ωd

of “successive minima” as in Lemma 3.4. Throughout our argument, u, ω1, . . . , ωd

are fixed.
Because |φQ(β)|∞ < C2, there exists y such that |y|∞ = |φQ(β)|∞ and expφ(y) =

φQ(β). Since Qu satisfies expφ(Qu) = φQ(β), there exist P1, . . . , Pd ∈ A such that

y = Qu + P1ω1 + · · · + Pdωd.

Moreover, because of Lemma 3.6, there exists no y′ with

|y′|∞ < |φQ(β)|∞ < C2

such that expφ(y′) = φQ(β). Thus, |Qu|∞ ≥ |y|∞. Therefore, we have

|P1ω1 + · · · + Pdωd|∞ ≤ |Qu|∞
(because otherwise |y|∞ > |Qu|∞).

Thus, by Lemma 3.4 we see that

(3.7.1) max
i

|Piωi|∞ ≤ |Q|∞ · |u|∞.

Taking logarithms in (3.7.1), we obtain

max
i

deg(Pi) ≤ deg(Q) + log |u|∞ − min
i

log |ωi|∞.

Let C3 := log |u|∞. Hence, maxi deg(Pi) ≤ deg Q + C4 (the constant C4 depends
only on C3 and φ, as the (ωi)d

i=1 is a fixed basis of successive minima for the
corresponding lattice of φ at ∞). Thus, Proposition 3.2 gives

log |φQ(β)|∞ = log |y|∞ = log |Qu + P1ω1 + · · · + Pdωd|∞
≥ C1(deg Q + C4) log(deg Q + C4).

(3.7.2)
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Note that we know y %= 0, because φQ(β) %= 0 (and hence, we can apply the
inequality from Proposition 3.2). For large Q, this means that log |φQ(β)|∞

qd deg Q ≥ −ε,
which completes our proof. !

Corollary 3.8. For any nontorsion β ∈ K and for any place ∞ ∈ MK(β) lying
above v∞, we have

lim
deg Q→∞

log |φQ(β)|∞
qd deg Q

= ĥ∞(β).

Proof. If β is in the filled Julia set, then this is Proposition 3.7. If β is not in the
filled Julia set, then for large n, we have

|φtn(β)|∞ > max(|φtm(β)|∞, 1)

for all m < n. So, for Q of large degree we have

|φQ(β)|∞ = |φtdeg Q(β)|∞ = max(|φtdeg Q(β)|∞, 1).

Our claim then follows from the definition of the local canonical height with respect
to φ. !

Let L be a finite extension of K containing β. Now we deal with the places w
of L which do not lie over v∞. We recall that for such w, all coefficients of φQ are
integral at w for each Q ∈ A.

If β /∈ Jφ,w, then |φQ(β)|w is unbounded as deg Q → ∞. Then, by the definition
of the local canonical height (see also the proof of Corollary 3.8), we have

(3.8.1) ĥw(β) = lim
deg(Q)→∞

log |φQ(β)|w
qd deg(Q)

.

We will show that when β ∈ Jφ,w, the limit above is equal to 0.

Proposition 3.9. Let L be a finite extension of K, and let w ∈ ML be a place not
lying over v∞. Let β ∈ L be a nontorsion point which is also in Jφ,w. Then

lim
deg(Q)→∞

log |φQ(β)|w
qd deg(Q)

= 0.

Proof. Because β is in the w-adic filled Julia set, |φQ(β)|w is bounded. Hence, for
every ε > 0, there exists an integer N+

ε such that if deg(Q) > N+
ε , then

log |φQ(β)|w
qd deg(Q)

< ε.

It remains to show that for every ε > 0 there exists an integer N−
ε such that if

deg(Q) > N−
ε , then

(3.9.1)
log |φQ(β)|w

qd deg(Q)
> −ε.

For proving (3.9.1), we start with a general lemma about valuations.

Lemma 3.10. Let F (X) = bnXn+· · ·+b1X be a polynomial such that |bi|w ≤ 1 for
all i. Then |F (x)|w = |b1x|w whenever |x|w < |b1|w. In particular, |F (x)|w ≤ |x|w.
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Proof of Lemma 3.10. For any i ≥ 2, we have

|bix
i|w ≤ |bix

2|w < |bib1x|w ≤ |b1x|w.

Applying the ultrametric inequality thus yields

|F (x)|w = |bnxn + · · · + b1x|w = |b1x|w.

!
The following result is an immediate corollary of the fact that all coefficients of

φQ (for Q ∈ A) are w-adic integers.

Corollary 3.11. For 0 < ε ≤ 1, the set of polynomials Q ∈ A such that |φQ(β)|w <
ε is an ideal in A.

We continue the proof of Proposition 3.9. The place w restricts to a place on
Fq(t) which corresponds to an irreducible polynomial P ∈ A.

Hence, for each polynomial Q ∈ A, we have |Q|w = |P |ordP (Q)
w , where P ordP (Q)

is the largest power of P dividing Q. The following lemma will finish the proof of
Proposition 3.9.

Lemma 3.12. There exists a positive constant Cw such that

|φQ(β)|w ≥ Cw|P |ordP (Q)
w

for all Q ∈ A.

Proof. If there is no F ∈ A such that |φF (β)|w < |P |w, then we are done. Oth-
erwise, let G ∈ A generate the ideal of all polynomials F such that |φF (β)|w <
|P |w < 1, and let Cw := |φG(β)|w (note that φG(β) %= 0 because β is nontorsion).

Let Q be any element in the ideal generated by G. We may write Q = FG for
a polynomial F ∈ Fq[t]. We expand F out P -adically, i.e. we write

F = RnPn + · · · + R1P + R0

where each Ri is a polynomial of degree less than deg P . Since |Ri|w = 1 for each
i, we have

|(φRiφG)(β)|w = Cw < |P |w
by Lemma 3.10. Moreover, also by Lemma 3.10, we have

|(φP φRiφG)(β)|w = Cw|P |w,

and more generally, by induction, we have

|(φP iφRiφG)(β)|w = Cw|P |iw,

for any i. Thus, letting f be the smallest i such that Ri %= 0, we have

|φQ(β)|w = |(φRf P f φG)(β)|w = Cw|P |fw.

Since f ≤ ordP (Q), this completes our proof of Lemma 3.12. !
Using Lemma 3.12, we obtain

log |φQ(β)|w ≥ log(Cw) + deg(Q) log |P |w,

which proves (3.9.1) and thus concludes the proof of Proposition 3.9. !
The following corollary is an immedate consequence of Proposition 3.9 (see also

Corollary 3.8).
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Corollary 3.13. Let L be a finite extension of K and let β ∈ L be a nontorsion
point. Then for every w ∈ ML,

ĥw(β) = lim
deg(Q)→∞

log |φQ(β)|w
deg(φQ)

.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Using the product formula applied to the leading coefficient
of F , we see that it suffices to prove our result under the assumption that F is
monic. Write F =

∏n
i=1(Z − θi). Then

∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0

log |F (y)|v

=
∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0

n∑

i=1

log |y − θi|v

=
∑

v∈MK

lim
deg Q→∞

1
qd deg(Q)

n∑

i=1

log |φQ(θi)|v

−
∑

v∈MK

lim
deg Q→∞

n log |γQ|v
qd deg Q

,

(3.13.1)

where γQ is the leading coefficient of φQ. Using induction, it is easy to see that
log |γQ|v = qd deg Q−1

qd−1 log |cad|v, where ad is the leading coefficient of φt and c is the
leading coefficient of Q (which is in Fq). Passing to the limit, we then find that

lim
deg Q→∞

log |γQ|v
qd deg Q

=
log |ad|v
qd − 1

.

Applying the product formula to ad we thus see that the sum
∑

v∈MK

lim
deg Q→∞

log |γQ|v
qd deg Q

vanishes. Hence, it will suffice to show that

(3.13.2) (deg F )(ĥ(β)) =
∑

v∈MK

lim
deg Q→∞

n∑

i=1

log |φQ(θi)|v
qd deg Q

.

Now, let L := K(β), and let pt (for some t ≥ 0) be the inseparable degree of
L/K. Then n = pts, where s is the separable degree of L/K. Moreover, the θi

above (for 1 ≤ i ≤ n) split into s multisets, each of them consisting of pt identical
elements (while different multisets have different elements). Therefore we may
choose distinct θ1, . . . , θs among the θi above. Let K1 := K1/pt

, and let L1 be
the compositum (inside K) of K1 and L. Then L1/K1 is a separable extension of
degree s. Moreover, the irreducible polynomial F1 of β ∈ L1 over K1 equals F 1/pt

.
Dividing both sides of (3.13.2) by pt, we obtain

(3.13.3) (deg F1)(ĥ(β)) =
∑

v∈MK1

lim
deg Q→∞

s∑

i=1

log |φQ(θi)|v
qd deg Q

.
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Note that for (3.13.3) we used the fact that above each place v ∈ MK lies a
unique place of K1 (which we also denote by v). Therefore we are left to prove
(3.13.2) in the case where β generates a separable extension. Thus from now on we
assume L/K is a separable extension of degree n.

Following [Ser97, page 11], each absolute value of some x ∈ Lw (for w|v) takes
the form |NLw/Kv

(x)|1/[L:K]
v . Writing NLw/Kv

(x) as ιw,1(x) · · · ιw,mw(x), where
ιw,1, . . . , ιw,mw are the embeddings of Lw into Cv (and mw = [Lw : Kv]), we have

|x|[L:K]
w =

mw∏

j=1

|ιw,j(x)|v.

For each θi in Cv, there is exactly one pair (w, j) such that ιw,j(β) = θi. So, using
the fact that φQ(θi) = ιw,j(φQ(β)) (because φQ has coefficients in K), we sum over
all Lw and obtain

n∑

i=1

log |φQ(θi)|v = [L : K]
∑

w|v

log |φQ(β)|w.

Passing to the limit, and using the fact that [L : K] = (deg F ), we thus obtain
∑

v∈MK

lim
deg Q→∞

n∑

i=1

log |φQ(θi)|v
qd deg Q

=
∑

w∈ML

lim
deg Q→∞

(deg F ) · log |φQ(β)|w
qd deg Q

= (deg F )
∑

w∈ML

ĥw(β)

= (deg F )ĥ(β),

as desired. !
We can extend the conclusion of Theorem 3.1 and prove the following result.

Theorem 3.14. For any β ∈ K and any nonzero irreducible F ∈ K[Z] such that
F (β) = 0, we have

(deg F )ĥ(β) =
∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0
F (y) (=0

log |F (y)|v.
(3.14.1)

Proof. The difference from Theorem 3.1 is that in Theorem 3.14 we also deal with
torsion points β. This is why we exclude from the inner summation of (3.14.1) the
case F (y) = 0. Theorem 3.14 for β ∈ φtor follows exactly as Theorem 3.1 once we
prove the following proposition.

Proposition 3.15. Assume β ∈ K is a torsion point. Then
∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0
y (=β

log |y − β|v = 0.

Proof of Proposition 3.15. Let v ∈ MK . For each Q ∈ A we let γQ be the leading
coefficient of φQ. Also, let ad be the leading coefficient of φt. We will prove that

(3.15.1) lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0
y (=β

log |y − β|v = − log |ad|v
qd − 1

.
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Using (3.15.1) and the product formula for ad we will then conclude the proof of
Proposition 3.15.

We proceed to proving (3.15.1). Let Q ∈ A be a nonconstant polynomial. There
are two cases:

Case 1. φQ(β) = 0.
Then

∏

φQ(y)=0
y (=β

(β − y) =
(φQ)′ (β)

γQ
.

But the derivative (φQ)′ is identically equal to Q. Since |γQ|v = |ad|
qd deg Q−1

qd−1
v , we

have

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=0
y (=β

log |y − β|v = lim
deg Q→∞

log |Q|v − qd deg Q−1
qd−1 log |ad|v

qd deg Q

= − log |ad|v
qd − 1

,

as desired.
Case 2. φQ(β) %= 0.
Then

(3.15.2)
∏

φQ(y)=0
y (=β

(β − y) =
∏

φQ(y)=0

(β − y) =
φQ(β)

γQ
.

However, φQ(β) is one of the finitely many nonzero torsion points of φ of order
dividing the order of β. Therefore, taking logarithms of (3.15.2) and using |γQ|v =

|ad|
qd deg Q−1

qd−1
v , we conclude the proof of (3.15.1). !

Arguing as in the proof of Theorem 3.1 we deduce the remaining case of Theo-
rem 3.14 (i.e. β ∈ φtor) from Proposition 3.15. !

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Since β is in K, the polynomial F satisfied by β in the
statement of Theorem 3.1 may be taken to be F (Z) = Z − β. Let

(3.15.3) φt(X) = adX
qd

+ ad−1X
qd−1

+ · · · + a1X
q + tX.

Then the leading coefficient γQ of φQ equals ca
qd deg(Q)−1

qd−1
d , where c ∈ Fq is the

leading coefficient of Q. We observe that |γQ|v %= 1 if and only if |ad|v %= 1. Then,
after taking products followed by logarithms, we see that

(3.15.4)
∑

φQ(y)=0

log |y − β|v = log |φQ(β)|v − log |γQ|v.

Now, suppose that there are infinitely many Q such that φQ(β) is S-integral for 0.
Let T be the set of all places in S along with all the places v for which |β|v > 1
and all the places of bad reduction for φ. For any Q, at any v outside of T , we
have |y|v ≤ 1 when φQ(y) = 0 (see Fact 2.3). Since |β|v ≤ 1, then log |y − β|v ≤ 0
for v /∈ T .
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When φQ(β) is S-integral for 0, it is certainly T -integral as well. So, for all
v outside T , we have

∑
y log |y − β|v ≥ 0, by (3.15.4) (note that |γQ|v = 1

and |φQ(β)|v ≥ 1 because φQ(β) is T -integral). Hence, for these Q, we have
log |y − β|v = 0 for all v outside T , and for all y such that φQ(y) = 0. Since T is
finite, we can interchange the limit and the sum in (3.1.1) and apply the product
formula, which yields ĥ(β) = 0. This is a contradiction, since β is nontorsion. !

Remark 3.16. It is worth noting that our alternative way of computing local heights
(see Corollary 3.13) also holds for β ∈ Cw if w does not lie over v∞. For example,
our key Lemma 3.12 holds for every nontorsion point in Cw, not only for algebraic
points (i.e. for points in K). However, Corollary 3.13 cannot be extended to all
β ∈ C∞ as shown by the following example. This is the case because Bosser’s result
(our Proposition 3.2) does not hold for linear forms in logarithms of transcendental
points in C∞ (i.e points not in K).

Example 3.17. We construct an example of a point β ∈ C∞ for which the limit
limdeg Q→∞

log |φQ(β)|∞
qd deg Q does not exist.

We work with the simplest Drinfeld module (but a similar construction works for
any Drinfeld module as the reader will easily see). So, we let φ : Fq[t] → Fq(t){τ}
be the Carlitz module, i.e. φt(x) = tx + xq. By abuse of notation, we denote by
∞ the place v∞ of Fq(t). The Carlitz module has associated to it a 1-dimensional
lattice at ∞ which is spanned by an element called ζ, say.

Let (d(n))n≥1 be a sequence of positive integers which is very rapidly increasing,
i.e. d(n + 1) is much larger than qd(n). For the sake of concreteness, we will use
the sequence d(n) defined recursively, by letting d(1) := q and for every n ≥ 1,
d(n + 1) := qqd(n)

.
Let α := ζ ·

∑
n≥1

1
td(n) ∈ C∞. Clearly α is a (very rapidly) convergent power

series.
Let β := expφ(α), where expφ is the usual exponential map of φ at ∞. This

is the transcendental point (i.e. not in K) which will give us our counterexample
because |φtd(n)(β)|∞ will be much too rapidly decreasing.

Indeed, φtd(n)(β) = expφ(td(n)α), and using the fact that expφ kills everything
in Fq[t] · ζ, we conclude that

φtd(n)(β) = expφ

(
ζ ·

∑

m>n

1
td(m)−d(n)

)
.

Now, because our sequence (d(m))m≥1 was chosen to be rapidly increasing,
| 1
td(n+1)−d(n) |∞ is sufficiently small (for sufficiently large n) and so, ζ·

∑
m>n

1
td(m)−d(n)

is in a sufficiently small ball around 0 on which expφ preserves the metric (see
Lemma 3.6). Moreover,

∣∣∣∣∣ζ ·
∑

m>n

1
td(m)−d(n)

∣∣∣∣∣
∞

= |ζ|∞ ·
∣∣∣∣

1
td(n+1)−d(n)

∣∣∣∣
∞

.

Therefore, we have

(3.17.1) |φtd(n)(β)|∞ = |ζ|∞ ·
∣∣∣∣

1
td(n+1)−d(n)

∣∣∣∣
∞

= |ζ|∞ · e−(d(n+1)−d(n)),
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so log |φtd(n)(β)|∞ = log |ζ|∞ − (d(n + 1) − d(n)). Since d(n + 1) − d(n) is much
larger than qd(n) (because d(n + 1) = qqd(n)

), we see that log |φtd(n)(β)|∞ is much
smaller than −qd(n). More precisely,

lim
n→∞

d(n + 1) − d(n)
qd(n)

= lim
n→∞

d(n + 1)
qd(n)

= lim
n→∞

qqd(n)

qd(n)
= +∞,

showing that we do not have a finite limit for

log |φQ(β)|∞
qdeg(Q)

as deg Q → ∞.

4. An analog of a theorem of Schinzel

Using our findings we are able to prove the following result, which is similar
to a result of Schinzel [Sch74] for primitive divisors of Bn − Cn in number fields.
It came to our attention that independently, Hsia [Hsi] proved a similar Schinzel
statement for Drinfeld modules. We thank him for pointing out the argument for
our Lemma 4.2.

Theorem 4.1. Let K be a finite extension of Fq(t). Let β ∈ K be a nontorsion
point for φ, and let S be a finite set of places in MK . Then there exists a positive
integer N such that for all Q ∈ Fq[t] of degree at least N , there exists v ∈ MK \ S
such that

(i) |φQ(β)|v < 1; and
(ii) for every nonzero polynomial P ∈ Fq[t] that divides Q and has smaller

degree than Q, we have |φP (β)|v ≥ 1.

We begin by proving a precise result combining Lemmas 3.10 and 3.12.

Lemma 4.2. Let v ∈ MK be a place lying above the irreducible polynomial P ∈
Fq[t]. Let l := deg P . For any x ∈ K, if

|x|v < |P |
1

ql−1
v < 1,

then for every Q ∈ Fq[t], we have |φQ(x)|v = |Qx|v ≤ |x|v.

Proof. If Q ∈ Fq[t] is coprime with P , then |Q|v = 1. Thus |x|v < |Q|v and so,
using Lemma 3.10, we conclude that |φQ(x)|v = |Qx|v.

Let φP =
∑dl

i=0 biτ i. We know that b0 = P (by the definition of φ). If

(4.2.1) |x|v < min
1≤i≤dl

(∣∣∣∣
P

bi

∣∣∣∣
v

) 1
qi−1

,

then for every 1 ≤ i ≤ dl, we have |Px|v > |bixqi |v; so, |φP (x)|v = |Px|v. We will

next show that |x|v < |P |
1

ql−1
v implies (4.2.1). First we prove that |bi|v ≤ |P |v for

every 1 ≤ i ≤ l − 1.
If l = 1, then the above claim is vacuously true. Therefore, assume l > 1. We

will use induction on i to show that |bi|v ≤ |P |v for every 1 ≤ i ≤ l − 1. Since
φP φt = φtφP , writing φt =

∑d
i=0 aiτ i, and noting that the coefficient of τ is the

same in φtφP as it is in φP φt, we obtain

(4.2.2) a0b1 + a1b
q
0 = b0a1 + b1a

q
0.
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Since b0 = P and a0 = t, (4.2.2) gives rise to the equality

|b1|v · |tq − t|v = |a1|v · |P q − P |v ≤ 1 · |P |v = |P |v.

Since we assumed l > 1, we have |tq − t|v = 1. Hence, the equation above yields
|b1|v ≤ |P |v, as desired. Proceeding by induction, we now assume that |bj |v ≤ |P |v
for all 1 ≤ j < i. Equating coefficients of τ i in both φtφP and φP φt, we obtain

a0bi +
∑

j>1

ajb
qj

i−j = bia
qi

0 +
∑

j<i

bja
qj

i−j .

Since |bj |v ≤ |P |v for all 1 ≤ j < i by assumption (and |aj |v ≤ 1 for every j), we see
that |bi|v · |tq

i − t|v ≤ |P |v. But tq
i − t is divisible only by irreducible polynomials in

Fq[t] of degree at most i (since tq
i−1 − 1 splits completely over a degree i extension

of Fq). Therefore, |tqi − t|v = 1 (because i < l), so |bi|v ≤ |P |v, as desired.
Since |bi|v ≤ |P |v < 1 for every 1 ≤ i ≤ l − 1, and |bi|v ≤ 1 for every i ≥ l, we

have

|P |
1

ql−1
v ≤ min

1≤i≤dl

(∣∣∣∣
P

bi

∣∣∣∣
v

) 1
qi−1

.

So, if |x|v < |P |
1

ql−1
v , then (4.2.1) holds and we have|φP (x)|v = |Px|v. Moreover,

|Px|v = |P |v · |x|v < |P |v and so, using Lemma 3.10, we see that

|φP 2(x)|v = |φP (φP (x))|v = |PφP (x)|v = |P 2x|v.

Similarly, an easy induction shows that for every i ≥ 0, we have |φP i(x)|v = |P ix|v.
For any (nonzero) Q ∈ Fq[t], there exists i ≥ 0 and R ∈ Fq[t] coprime with P such
that Q = P iR. Using |φR(x)|v = |x|v, we thus obtain

|φQ(x)|v = |φP i(φR(x))|v = |P i|v · |φR(x)|v = |Q|v · |x|v,

and our proof is complete. !

Corollary 4.3. Let x ∈ K. For all but finitely many places v ∈ MK , if πv ∈ K is
an uniformizer at v, and |x|v ≤ |πv|v, then |φQ(x)|v = |Qx|v for every Q ∈ Fq[t].
More precisely, if |x|v < 1 and v lies over a place of Fq(t) corresponding to an
irreducible polynomial of degree larger than logq ([K : Fq(t)] + 1), then |φQ(x)|v =
|Qx|v for every Q ∈ Fq[t].

Proof. Let v ∈ MK lie over the irreducible polynomial P ∈ Fq[t], and let l = deg P .

By Lemma 4.2, if |x|v < |P |
1

ql−1
v , then |φQ(x)|v = |Qx|v for every Q ∈ Fq[t]. But

|P |v ≥ |πv|
[K:Fq(t)]
v . Therefore, if ql − 1 > [K : Fq(t)], then

|P |
1

ql−1
v > |πv|v.

Thus, if |x|v ≤ |πv|v, then (by Lemma 4.2) |φQ(x)|v = |Qx|v for every Q ∈ Fq[t].
Finally, note that there are finitely many polynomials in Fq[t] having bounded
degree. !

We will also need the following technical result about local heights for our proof
of Theorem 4.1.



4878 D. GHIOCA AND T. J. TUCKER

Lemma 4.4. Let β ∈ K be a nontorsion point for the Drinfeld module φ. Then
there exist positive constants C0 and N0 (depending on φ and β) such that for every
place v ∈ MK for which ĥv(β) > 0, and for every Q ∈ A = Fq[t] of degree larger
than N0, we have

qd deg(Q)ĥv(β) − C0 ≤ log |φQ(β)|v ≤ qd deg(Q)ĥv(β) + C0.

Proof. Because we allow the constants C0 and N0 from the conclusion of Lemma 4.4
to depend on β, it suffices to prove our lemma for each (of the finitely many places)
v ∈ MK for which ĥv(β) > 0.

Let φt =
∑d

i=0 aiτ i. For a fixed place v ∈ MK for which ĥv(β) > 0, we define

Mv := max

{(
|ai|v
|ad|v

) 1
qd−qi

: 0 ≤ i < d

}
∪





1

|ad|
1

qd−1
v




 .

Let N0 be a positive integer such that |φtN0 (β)|v > Mv (we can find such N0 because
(|φtn(β)|v)n is unbounded). Let γ := |φtN0 (β)|v. The definition of Mv yields

|φtN0+1(β)|v = |φt(φtN0 (β))|v = |ad|v · γqd

> γ > Mv.

A simple induction shows that for every n ≥ 1, we have

|φtN0+n(β)|v = |ad|
qdn−1
qd−1

v γqnd

.

Hence,

ĥv(β) = lim
n→∞

log |φtN0+n(β)|v
qd(N0+n)

=
log |ad|v

qdN0(qd − 1)
+

log γ

qdN0
,

which means that

log |φtN0+n(β)|v = qd(N0+n)ĥv(β) − log |ad|v
qd − 1

.

Moreover, for every Q ∈ A of degree N0 + n (for n ≥ 1), we have

log |φQ(β)|v = log |φtN0+n(β)|v = qd(N0+n)ĥv(β) − log |ad|v
qd − 1

,

which concludes the proof of Lemma 4.4. !
The following lemma is the key to proving Theorem 4.1.

Lemma 4.5. With the hypothesis from Theorem 4.1, let Q ∈ Fq[t] be a nonconstant
monic polynomial. Let T be the set of places v ∈ MK that satisfy the following
properties:

(i) if P ∈ Fq[t] is an irreducible polynomial for which |P |v < 1, then deg P >
logq ([K : Fq(t)] + 1);

(ii) β is a v-adic integer;
(iii) v is a place of good reduction for φ;
(iv) either |φQ(β)|v = 1, or there is some P %= Q in Fq[t] such that P |Q and

|φP (β)|v < 1;
(v) v /∈ S.

Then

(4.5.1)
∑

v∈T

∑

y has order Q

log |β − y|v ≥ − deg Q.



EQUIDISTRIBUTION AND INTEGRAL POINTS FOR DRINFELD MODULES 4879

Proof. Since
∑

v∈MK
v does not lie over v∞

log |Q|v = − log |Q|v∞ = − deg Q

and no place v ∈ T lies over v∞, it will suffice to show that for each v ∈ T , we have

(4.5.2)
∑

y has order Q

log |β − y|v ≥ log |Q|v.

If |φQ(β)|v = 1, then for every y such that φQ(y) = 0, we have |y − β|v = 1.
Indeed, Fact 2.3 implies |y|v ≤ 1 for all torsion points y, because all v ∈ T are
places of good reduction for φ. Moreover, |β − y|v ≤ 1 for v ∈ T and y ∈ φtor due
to (ii). Furthermore, the leading coefficient γQ of φQ is a v-adic unit. Thus

log |φQ(β)|v =
∑

φQ(y)=0

log |y − β|v.

Hence, if |φQ(β)|v = 1, then indeed |y − β|v = 1 for all y of order dividing Q.
Therefore (4.5.2) holds in this case because |Q|v ≤ 1 for v ∈ T .

Thus, we may assume that |φQ(β)|v < 1. Let P0 be the smallest degree monic
polynomial dividing Q such that |φP0(β)|v < 1. Then, since |y − β|v ≤ 1 for each
torsion point y and since the leading coefficient of φP0 is a v-adic unit, we have

∑

φP (y)=0
for P |Q with P (= Q

log |β − y|v ≤
∑

φP0 (y)=0

log |β − y|v = log |φP0(β)|v.
(4.5.3)

Using again that the leading coefficient of φQ is a v-adic unit, we obtain

(4.5.4)
∑

φQ(y)=0

log |β − y|v = log |φQ(β)|v.

Since v ∈ T satisfies (i) and |φP0(x)|v < 1, we can use the more precise claim of
Corollary 4.3 and derive

(4.5.5) log |φQ(β)|v = log
∣∣∣∣
Q

P0

∣∣∣∣
v

+ log |φP0(β)|v ≥ log |Q|v + log |φP0(β)|v.

Equations (4.5.3), (4.5.4), and (4.5.5) yield (4.5.2), which finishes the proof of
Lemma 4.5. !

We define the Möbius function µ on the multiplicative set of all monic polyno-
mials in Fq[t] by

µ(1) = 1,
µ(Q1Q2 . . . Qn) = (−1)n,

if Q1, . . . , Qn are distinct irreducible, nonconstant polynomials, and

µ(f) = 0 if f is not squarefree.

Lemma 4.6. With the notation as in Lemma 4.5, for each v ∈ T , we have
∑

y has order Q

log |y − β|v =
∑

P |Q

µ

(
Q

P

)
log |φP (β)|v.
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Proof. Since the leading coefficient of φP (for each nonzero polynomial P ) is a
v-adic unit for each place v ∈ T , then for each P |Q, we have

(4.6.1)
∑

φP (y)=0

log |y − β|v = log |φP (β)|v.

Using (4.6.1) and the principle of inclusion and exclusion applied to the set of all y
such that φQ(y) = 0 (by counting them with respect to their corresponding orders
P |Q), we obtain the result of Lemma 4.6. !

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. After dividing Q by its leading coefficient (which is a con-
stant in Fq), we may assume Q is monic. We will argue by contradiction.

We begin by dividing the places of K into three sets. We let S denote the set of
all places v such that ĥv(β) > 0, let T be as in Lemma 4.5, and let U denote the
remaining places. Note that S and U are both finite, because T contains all but
finitely many places in MK (here we are using the assumption that the conclusion
of our Theorem 4.1 fails, because then condition (iv) in Lemma 4.5 is satisfied by
all but finitely many places). Note that S ⊂ S∪U because by assumption (v) from
Lemma 4.5, the set T ∩ S is empty.

We begin by dealing with the places in S. As proved in Lemma 4.4, there exists
a positive integer N0 and a positive constant C0 such that for all Q ∈ Fq[t] of degree
larger than N0, and for all v ∈ S, we have

(4.6.2) qd deg(Q)ĥv(β) − C0 ≤ log |φQ(β)|v ≤ qd deg(Q)ĥv(β) + C0.

Therefore, from now on, we will always assume deg(Q) > N0.
Next, we treat the places in U . As proved in (3.7.2) and in Lemma 3.12, there

exist positive constants C1, C2, and C3 depending only on φ, β and U such that
for all v ∈ U ,

(4.6.3) −C1 deg(Q) log deg(Q) − C2 < log |φQ(β)|v < C3.

The right hand side of (4.6.3) is guaranteed by the fact that ĥv(β) = 0 (because
only S contains places v for which ĥv(β) > 0). Summing over all the v in U , we
see that there are constants C4, C5, and C6 such that

(4.6.4) −C4 deg(Q) log deg(Q) − C5 <
∑

v∈U
log |φQ(β)|v < C6.

Since there are finitely many polynomials P of degree at most equal to N0, we see
from equations (4.6.2) and (4.6.4) that there are constants C7 and C8 such that

qd deg P ĥ(β) − C4 deg(Q) log deg(Q) − C7 ≤
∑

v∈S∪U
log |φP (β)|v

≤ qd deg P ĥ(β) + C8,

(4.6.5)

for all P |Q. Since T consists of all the places not in U or S, we thus obtain from
the product formula that

qd deg P ĥ(β) − C4 deg(Q) log deg(Q) − C7 ≤
∑

v∈T
− log |φP (β)|v

≤ qd deg P ĥ(β) + C8

(4.6.6)
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for all P |Q. Moreover, equation (4.6.1) gives

qd deg P ĥ(β) − C4 deg(Q) log deg(Q) − C7 ≤
∑

v∈T

∑

φP (y)=0

− log |y − β|v

≤ qd deg P ĥ(β) + C8.

(4.6.7)

Using (4.6.7), we will bound
∑

v∈T

∑

φP (y)=0
for P |Q with P (= Q

− log |β − y|v.

We compute the above sum via inclusion-exclusion (as we did in Lemma 4.6) and
we obtain

(4.6.8)
∑

P |Q
P (=Q

−µ

(
Q

P

) ∑

v∈T

∑

φP (y)=0

− log |β − y|v.

A simple computation using (4.6.7) and (4.6.8) shows that if Q1, . . . , Qs are all the
distinct irreducible factors of Q, then

∑

v∈T

∑

φP (y)=0
for P |Q with P (= Q

− log |β − y|v

≤
(

qd deg(Q) − qd deg(Q)
s∏

i=1

(
1 − q−d deg(Qi)

))
ĥ(β)

+ 2s (C4 deg(Q) log deg(Q) + C7 + C8) ,

(4.6.9)

due to the simple identity

∑

P |Q
P (=Q

−µ

(
Q

P

)
qd deg(P ) = qd deg(Q) − qd deg(Q)

s∏

i=1

(
1 − q−d deg(Qi)

)

and the fact that there are 2s − 1 nonzero terms in the outer sum from (4.6.8).
Using (4.6.7) for P = Q, we obtain

∑

v∈T

∑

φQ(y)=0

− log |y − β|v ≥ qd deg Qĥ(β) − C4 deg(Q) log deg(Q) − C7.(4.6.10)

But Lemma 4.5 and equation (4.6.9) imply that
∑

v∈T

∑

φQ(y)=0

− log |y − β|v

≤ ĥ(β)

(
qd deg(Q) − qd deg(Q)

s∏

i=1

(
1 − q−d deg(Qi)

))

+ 2s (C4 deg(Q) log deg(Q) + C7 + C8) + deg Q.

(4.6.11)
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Since ĥ(β) is positive, for Q of large degree we have

qd deg Qĥ(β) − C4 deg(Q) log(deg(Q)) − C7

> ĥ(β)

(
qd deg(Q) − qd deg(Q)

s∏

i=1

(
1 − q−d deg(Qi)

))

+ 2s (C4 deg(Q) log deg(Q) + C7 + C8) + deg Q

(4.6.12)

because (recalling that s is the number of distinct irreducible factors of Q, which
is much smaller than deg Q as deg Q goes to infinity)

qd deg(Q)
s∏

i=1

(
1 − q−d deg(Qi)

)
ĥ(β) ≥

√
qd deg(Q)ĥ(β)

> 2s+1 (C8 + deg Q + C4 deg(Q) log deg(Q) + C7) .

Inequalities (4.6.10), (4.6.11) and (4.6.12) give us a contradiction, which means
that there exists v ∈ T such that |φQ(β)|v < 1 but |φP (β)|v = 1 for all P |Q with
P %= Q. !

The following result is an immediate consequence of Theorem 4.1.

Corollary 4.7. With the notation as in Theorem 4.1, there exists a positive integer
N such that for all monic Q ∈ Fq[t] of degree at least N , there exists a place v ∈ MK

of good reduction for φ, such that β is integral at v and β is a torsion point of order
Q for φ.

5. Further directions

Let ψ : P1 −→ P1 be a rational map of degree d > 1 defined over a number field
L. As with Drinfeld modules, one can define canonical heights ĥv for ψ, following
Call and Goldstine ([CG97]). Piñeiro, Szpiro, and Tucker ([PST04]) have proved
that

ĥv(β) =
∫

P1(Cv)
log |F |vdµv,ψ ,

where ĥv is the local canonical height for ψ and µv,ψ is an invariant measure associ-
ated to ψ on P1(Cv). This generalizes an earlier formula due to Mahler ([Mah60]).
The invariant measure at an archimedean place v was constructed by Lyubich
([Lyu83]; see also [Bro65] and [FLM83, Mañ88]), while the invariant measure at
nonarchimedean places (which technically exists on the Berkovich space for P1(Cv),
as defined in [Ber90]) was constructed by Baker/Rumely ([BR06]), Chambert-Loir
([CL06]), and Favre/Rivera-Letelier ([FRL04, FRL]). These measures can also be
constructed at places of a function field over a finite field (see [Ghi06] for a treatment
of these measures at places lying over v∞). Thus, Theorem 3.1 shows that a certain
integral of the function log |x−β|v may be computed by averaging this function over
the torsion points of φ. Hence, Theorem 3.1 is a statement about equidistribution.
Note, however, that statements about equidistribution are usually phrased in terms
of continuous functions (as is the case in [Lyu83, BR06, CL06, FRL04, FRL, Ghi06]
for example). Theorem 3.1 applies to a function that has a logarithmic pole at an
algebraic number.
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Torsion points are merely inverse images of the point 0. In light of the results
of [ST] for rational functions over number fields, one is led to make the following
conjecture.

Conjecture 5.1. Let α be any point in Ga(K). Then, for any nontorsion β ∈ K
and any nonzero irreducible F ∈ K[Z] such that F (β) = 0, we have

(deg F )ĥ(β) =
∑

v∈MK

lim
deg Q→∞

1
qd deg Q

∑

φQ(y)=α

log |F (y)|v.

In [BIR05], Baker, Ih, and Rumely show that local heights can also be computed
by averaging log |x − β|v over Galois orbits of torsion points of elliptic curves and
of Gm over a number field. This is stronger, since the set of points y such that
ψm(y) = e (where e is the identity in the group) breaks into several Galois orbits
of torsion points. The work of Baker, Ih, and Rumely leads us to conjecture the
following.

Conjecture 5.2. Let (αn)∞n=1 be any nonrepeating sequence of torsion points in
Ga(K). Then for any nontorsion β ∈ K and any nonzero irreducible F ∈ K[Z]
such that F (β) = 0, we have

(deg F )ĥ(β) =
∑

v∈MK

lim
n→∞

1
#

(
Gal(K/K) · αn

)
∑

y∈Gal(K/K)·αn

log |F (y)|v.

Arguing as in the proof of Theorem 1.1, Conjecture 5.1 would yield the follow-
ing corollary, which is analogous to a theorem proved by Silverman ([Sil93]) for
nonconstant morphisms of P1 of degree greater than one over a number field.

Corollary 5.3. Let S be a finite set of places, let α be any point in Ga(K), and
let β be any nontorsion point in Ga(K). If Conjecture 5.1 holds, then there are
finitely many Q such that φQ(β) is S-integral for α.

Similarly, Conjecture 5.2 would imply the following corollary, which was proved
by Baker, Rumely, and Ih ([BIR05]) for elliptic curves and for Gm over a number
field. Baker, Ih, and Rumely have conjectured that an analog of this holds for
arbitrary nonconstant morphisms of degree greater than one of P1 over a number
field.

Corollary 5.4. Let S be a finite set of places. If Conjecture 5.2 holds, then for each
nontorsion β ∈ Ga(K) there are finitely many torsion points α that are S-integral
for β.

In the case of rational functions over number fields, the analog of Conjecture 5.1
has already been proved while the analog of Conjecture 5.2 is still just a conjecture
(though some special cases have been proved, as noted earlier). In the case of
Drinfeld modules, on the other hand, a proof of Conjecture 5.2 does not seem
far off. Indeed, it would follow from a combination of the Tate-Voloch conjecture
(proved in [Ghi07b]) with suitable equidistribution results for continuous functions
on the Berkovich space for P1

K . Such results have been proved in the number
field case by Baker/Rumely ([BR06]), Chambert-Loir ([CL06]), and Favre/Rivera-
Letelier ([FRL04, FRL]). M. Baker informs us that the techniques used in these
proofs should also work over function fields over finite fields.

It is less clear how one might proceed towards a proof of Conjecture 5.1. The
arguments involving linear forms in logarithms at the infinite places work exactly
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the same, but the proof of Lemma 3.12 does not seem to work when 0 is replaced
by an arbitrary point on Ga(K). Nevertheless, we are tempted to ask whether
something even more general than Corollary 5.3 is true.

Conjecture 5.5. Let S be a finite set of places, let α be any point in Ga(K), and
let Γ be any finitely generated φ-submodule of Ga(K). Then there are finitely many
γ ∈ Γ such that γ is S-integral for α.

This would say the same thing for finitely generated φ-submodules of Ga(K) that
Siegel’s theorem says for finitely generated Z-submodules of Gm(K). Theorem 1.1
shows that our Conjecture 5.5 holds when Γ is a cyclic φ-submodule and α = 0
(note that is also a special case of Corollary 5.3). We can easily generalize this to
a result that applies for any α ∈ φtor(K) (when Γ is a cyclic φ-submodule), as we
shall see next. We also mention that in [GT07] we proved Conjecture 5.5 under
the assumption that K has only one infinite place, and in addition assuming that
Bosser’s result on linear forms in logarithms holds also at finite places. While the
second assumption is believed to be true by experts in the field, we also believe
that the assumption from our paper [GT07] of having only one infinite place in K
could be removed, and so, Conjecture 5.5 would hold in the generality we stated
here.

Following the same reasoning we used in deducing Theorem 1.1 from Theorem 3.1
(which in turn was deduced from Corollary 3.13), we can prove Conjecture 5.5 in
the case α ∈ φtor(K) and Γ is a cyclic φ-submodule generated by a nontorsion point
β, from the following proposition.

Proposition 5.6. If β is a nontorsion point, and α ∈ K is a torsion point, then
for every place w ∈ MK(β), we have

ĥw(β) = lim
deg Q→∞

log |φQ(β) − α|w
qd deg Q

.

We noted earlier that Corollary 5.3 would follow easily from Conjecture 5.1 via
the arguments used in the derivation of Theorem 1.1 from Theorem 3.1. Now,
reasoning as in the proof of Theorem 3.1, we see that Proposition 5.6 yields Con-
jecture 5.1 in the case where α is torsion because (after reducing to the case that
F (Z) =

∏n
i=1(Z − θi) is separable, as we did in the proof of Theorem 3.1) we have

n∑

i=1

∑

φQ(y)=α

log |y − θi|v = n ·




∑

w|v
w∈MK(β)

log |φQ(β) − α|w



 − n log |γQ|v

for each v ∈ MK (where γQ is as before the leading coefficient of φQ). The above
equality follows readily from Proposition 5.6 using the arguments that appeared in
the proof of Theorem 3.1, after noting the bijection between the two sets

{y : φQ(y) = α} and {α0 + y : φQ(y) = 0},

where α0 is a fixed solution for φQ(x) = α. Therefore all we need to do is prove
Proposition 5.6. We provide a sketch of a proof below.

Proof of Proposition 5.6. If β is not in the filled Julia set for φ at w, then

|φQ(β) − α|w = |φQ(β)|w
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for polynomials Q of large degree. Thus, in this case, the conclusion of Proposi-
tion 5.6 is immediate.

Assume from now on that β is in the filled Julia set for φ at w. Then we need
to show that

(5.6.1) lim
deg Q→∞

log |φQ(β) − α|w
qd deg Q

= 0.

Let ε > 0. Since |φQ(β)|w is bounded as deg Q → ∞, it follows that

(5.6.2) lim sup
deg Q→∞

log |φQ(β) − α|w
qd deg Q

< ε.

It will suffice to also show that

(5.6.3) lim inf
deg Q→∞

log |φQ(β) − α|w
qd deg Q

> −ε.

If w lies over v∞, then an argument almost identical to the one used in Propo-
sition 3.7 will give rise to (5.6.3). As with Proposition 3.7, the key ingredient is
an application of the lower bound for linear forms in logarithms as provided by
Proposition 3.2.

If w does not lie over v∞, then a slight modification of our argument from
Proposition 3.9 may be used to prove (5.6.3). For this we use the following claim.

Claim 5.7. Let w be a place that does not lie over v∞. Then there exists a positive
constant Cw such that for every Q ∈ A, we have |φQ(β) − α|w ≥ Cw|Q|w.

Proof of Claim 5.7. Let R ∈ A be a nonconstant polynomial such that φR(α) = 0
(we recall that α ∈ φtor). If for every Q ∈ A, we have |φQ(β) − α|w ≥ |R|w,
then the conclusion of Claim 5.7 is immediate. Therefore, assume there exists
Q ∈ A such that |φQ(β) − α|w < |R|w. For each such Q, Lemma 3.10 yields
|φR(φQ(β) − α)|w = |R|w · |φQ(β) − α|w, which implies that

(5.7.1) |φRQ(β)|w = |R|w · |φQ(β) − α|w,

since φR(α) = 0. By Lemma 3.12, there exists Cw > 0 such that for every
polynomial Q′, we have |φQ′(β)|w ≥ Cw|Q′|w. Hence, in particular, we have
|φRQ(β)|w ≥ Cw · |RQ|w. Applying (5.7.1), we obtain |φQ(β) − α|w ≥ Cw|Q|w,
as desired. !

Since limdeg Q→∞
log |Q|w
qd deg Q = 0, Proposition 5.6 now follows immediately from

Claim 5.7. !
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[Bos02] , Hauteurs normalisées des sous-variétés de produits de modules de Drinfeld,
Compositio Math. 133 (2002), no. 3, 323–353. MR1930981 (2003g:11062)

[BR06] M. Baker and R. Rumely, Equidistribution of small points, rational dynamics, and
potential theory, Ann. Inst. Fourier (Grenoble) 56 (2006), 625–688. MR2244226

[Bro65] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965),
103–144. MR0194595 (33:2805)

[CG97] G. S. Call and S. Goldstine, Canonical heights on projective space, J. Number Theory
63 (1997), 211–243. MR1443758 (98c:11060)
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[PST04] J. Piñeiro, L. Szpiro, and T. Tucker, Mahler measure for dynamical systems on P1 and
intersection theory on a singular arithmetic surface, Geometric methods in algebra and
number theory (F. Bogomolov and Y. Tschinkel, eds.), Progress in Mathematics 235,
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