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Integral points in two-parameter orbits
By Pietro Corvaja at Udine, Vijay Sookdeo at Washington,

Thomas J. Tucker at Rochester and Umberto Zannier at Pisa

Abstract. Let K be a number field, let f W P1 ! P1 be a nonconstant rational map
of degree greater than 1, let S be a finite set of places of K, and suppose that u;w 2 P1.K/
are not preperiodic under f . We prove that the set of .m; n/ 2 N2 such that f ım.u/ is S -
integral relative to f ın.w/ is finite and effectively computable. This may be thought of as a
two-parameter analog of a result of Silverman on integral points in orbits of rational maps. This
issue can be translated in terms of integral points on an open subset of P21 ; then one can apply a
modern version of the method of Runge, after increasing the number of components at infinity
by iterating the rational map. Alternatively, an ineffective result comes from a well-known
theorem of Vojta.

1. Introduction

In 1929, Siegel [14] proved that if C is an irreducible affine curve defined over a number
fieldK and C has at least three points at infinity, then there are at most finitely manyK-rational
points on C that have integral coordinates. When C has positive genus, something stronger is
true: any affine curve defined over a number field has at most finitely many K-rational points
that have integral coordinates. Silverman [15, Theorem A] later gave a dynamical variant of
Siegel’s theorem, proving that if f W P1 ! P1 is a rational function such that f ı2 is not
a polynomial and u 2 K is not preperiodic for f , there are only finitely many n such that
f ın.u/ is integral relative to the point at infinity (we will give a full definition of what it
means to be integral relative to a point in Section 2). Moreover, [15, Theorem A] can be made
effective, as we shall see in Section 5.

Recently, various authors (see [2,7,9]) have proposed a dynamical analog of the Mordell–
Lang conjecture for semiabelian varieties. The Mordell–Lang conjecture for semiabelian va-
rieties, which was proved by Faltings [8] and Vojta [17], states that if a finitely generated
subgroup � of a semiabelian variety A over C intersects a subvariety V � A in infinitely many
points, then V must contain a translate of a positive-dimensional algebraic subgroup of A. One
dynamical analog asserts that if one has a morphism of varieties ˆ W X ! X defined over C,
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a subvariety V � X , and a point ˛ in X.C/, then the forward orbit of ˛ under ˆ (that is, the
set of distinct iterates ˆın.˛/) may intersect V infinitely often only if V contains a ˆ-periodic
subvariety of X (that is, a subvariety W of X such that ˆın.W / D W for some n > 0) having
positive dimension. Note, however, that since the forward orbit of a point under a single map
is parametrized by the positive integers, it is more analogous to a cyclic group � than it is to an
arbitrary finitely generated group � . Thus, one might ask for a “multi-parameter” dynamical
conjecture concerning the forward orbit of ˛ under a finitely generated semigroup of commut-
ing maps. In [10], this problem is considered and results are obtained in the case where the
subvarieties V are lines in A2 and the semigroup of morphisms is the set of all .f ım; gın/ for
fixed polynomials f and g.

The dynamical variants of the Mordell–Lang conjecture described above all pose ques-
tions about the intersection of forward orbits with subvarieties. Here we consider the related
problem of integral points in forward orbits. The main theorem of this paper is the following,
which may be thought of as a two-parameter version of [15, Theorem A].

Theorem 1.1. Let K be a number field, S a finite set of primes in K, and f W P1 ! P1
be a rational function with degree d � 2 that is not conjugate to a powering map x˙d . Let
u;w 2 P1.K/ be points that are not preperiodic for f . Then the set of .m; n/ 2 N2 such that
f ım.u/ is S -integral relative to f ın.w/ is finite and effectively computable.

Clearly the set .m; n/ such that f ım.u/ is S -integral relative to f ın.w/ depends on
u and w. It is possible, however, to prove an effective degeneracy result for integral points
depending only on f , S , and K. This is stated in Theorem 4.1, which is phrased in terms of
the S -integrality of points .f ım.u/; f ın.w// relative to inverse images of the diagonal in P21 .

The outline of the paper is as follows. In Section 2, after introducing some notation,
we give some equivalent notions of integrality. This will reduce our problem to the study of
integral points on the complement in P21 of suitable divisors. Then, we show that a noneffective
version of Theorem 1.1 can be obtained very quickly by combining [4, Appendix] with [16,
Theorem 2.4.1]; this is Theorem 3.3.

In Section 4, we prove Theorem 4.1, an effective degeneracy result for K-rational points
in P21 that are S -integral relative to inverse images of the diagonal under .f; f /.

The technique here originates from Runge’s theorem [13]; Runge treated only the case
of curves, but see [6, Section 9.6] and [12] for a modern account and higher dimensional
generalizations. Since inverse images of the diagonal under .f; f / have several components,
one might hope to construct many rational functions  whose pole divisors are supported on
these inverse images. The main difficulty is dealing with the points at which many components
of these pole divisors meet. This can be overcome by blowing up at these points and applying
a Runge-type result, Proposition 4.2, on the surface so obtained (we are indebted to the referee
for suggesting this method; the alternative which we followed in a first version of this work,
was more complicated); this requires showing that certain divisors in the blow-up have positive
Kodaira–Iitaka dimension, which is accomplished via estimates on self-intersections.

Next, in Section 5, we use Theorem 4.1 and some simple facts about periodic curves to
finish the proof of Theorem 1.1. We end with a few remarks about what happens when f is
conjugate to a powering map or u or w is preperiodic.
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2. Notation

Let Pn denote the usual projective n-space and write Pmn for them-fold Cartesian product
of Pn. We fix projective coordinates Œz1 W � � � W zn�. When convenient, we regard P1.K/ as
K [ ¹1º and work in affine coordinates.

For any curve C on a surface X and any point Q 2 C.K/, we let mC .Q/ denote the
multiplicity of C at Q; as usual (see [11, V.1], for example), the multiplicity of C at Q is
defined to be the largest integer r such that f r 2 mr

Q where f is a local equation for C near
Q and mQ is the maximal idea of Q in some affine neighborhood containing Q.

Let f .x/ D p.x/=q.x/, with p.x/; q.x/ coprime, be a rational function of degree d , and
write f ın.x/ D pn.x/=qn.x/ where pn.x/ and qn.x/ are also coprime. The homogenization
of f ın gives the rational function F ın.Œx0 W x1�/ D ŒPn.x0; x1/ W Qn.x0; x1/� on P1. Let Dn
be divisor of zeros for Pn.x0; x1/Qn.y0; y1/�Pn.y0; y1/Qn.x0; x1/ and Bi WD Di �Di�1.
We note that Bi is an effective divisor. In fact, put x D x0=x1 and y D y0=y1 and let

ˇi D
f ıi .x/ � f ıi .y/

f ı.i�1/.x/ � f ı.i�1/.y/
:

Then Bi is the zero divisor of ˇi , in particular it is effective.
We claim that each divisor Bi has at least one component which does not belong to

Di�1 D Bi�1 [ : : : [ B1. Let us verify this fact, which is equivalent to saying that there
exists a point .x; y/ 2 P1 � P1 such that f ı.i�1/.x/ ¤ f ı.i�1/.y/ but f ıi .x/ D f ıi .y/.
Now, the rational function f , viewed as a map P1.K/ ! P1.K/ is surjective and not injec-
tive; take two distinct points u; v 2 P1 with f .u/ D f .v/ and chose x; y 2 P1 such that
f ı.i�1/.u/ D x; f ı.i�1/.v/ D y, and we have that .x; y/ 2 Bi nDi�1.

Having fixed coordinates on P1, we have models .P1/oK and .P21 /oK for P1 and P21 over
the ring of integers oK for a number field K. Then, for any finite set of places of K including
all the archimedean places of K, we may define S -integrality in the usual ways. We say that
a point Q 2 P1.K/ is S -integral with respect to a point P 2 P1.K/ if the Zariski closures
of Q and P in .P1/oK do not meet over any primes v … S ; similarly, we say that a point
Q 2 P21 .K/ is S -integral with respect to a subvariety V of P21 , defined over K, if the Zariski
closures of Q and V in .P21 /oK do not meet over any primes v … S .

Note that the diagonal D0 in P21 is defined by the equation x0y1 � y0x1 D 0. So, more
concretely, we say that .Œa0 W a1�; Œb0 W b1�/ is S -integral relative to the diagonal D0 if

ja0b1 � a1b0jv � max.ja0jv; ja1jv/ �max.jb0jv; jb1jv/

for all v … S . Note that in that case the above inequality is in fact an equality. We say
Œa0 W a1� 2 P1.K/ is S -integral relative to Œb0 W b1� 2 P1.K/ if .Œa0 W a1�; Œb0 W b1�/ is S -
integral relative to D0. This definition of integrality is consistent with the previous one given
that involved models for P1 and P21 . Hence, given two points P;Q 2 P1.K/, we see that P
is integral with respect to Q if and only if the pair .P;Q/ 2 P21 .K/ is integral with respect to
the diagonal.
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We may suppose, after enlarging our set of places S , that our rational function f has
good reduction at all primes outside of S , that is that p and q have no common root at any
place outside of S . Then we see that .Œa0 W a1�; Œb0 W b1�/ is S -integral relative to Dn if

jPn.a0; a1/Qn.b0; b1/ � Pn.b0; b1/Qn.a0; a1/jv

� max.ja0jv; ja1jv/d
n

�max.jb0jv; jb1jv/d
n

for all v … S . Note that from the definition above, it is clear that if a point is S -integral relative
to Dn then it is also S -integral relative to Dm for any m � n (as one would expect given that
the support of Dm is contained in the support of Dn when m � n).

Furthermore, if S contains all the places of bad reduction for f , we have

.Œa0 W a1�; Œb0 W b1�/ is S -integral relative to Dn(2.1)

” .f ın.Œa0 W a1�/; f
ın.Œb0 W b1�// is S -integral relative to D0.

We will often use coordinates .x; y/ on P21 where x D x0=x1 and y D y0=y1 for
projective coordinates .Œx0 W x1�; Œy0 W y1�/. We write .1;1/ for the point .Œ1 W 0�; Œ1 W 0�/.

We say that point z is exceptional for f if z is a totally ramified fixed point of f ı2.
The 0-iterate f ı0 is always defined to be the identity map.
For any nonconstant rational map g W P1 ! P1 and any point z 2 P1, we define eg.z/ to

be the ramification index of z over g.z/. For example, if g.x/ D x2 C 2, then eg.0/ D 2 and
eg.z/ D 1 for all z 2 K n ¹0º.

3. Ineffective finiteness

Applying a result of Vojta, we have the following.

Theorem 3.1. Let K be a number field, S a finite set of primes in K, and f W P1 ! P1
be a rational function of degree d � 2. Then the set of points in P21 .K/ that are S -integral
relative to D4 lies in a proper closed subvariety Z of P21 .

Proof. The divisor D4 has at least five irreducible components, since it contains
B0; : : : ; B4 and each such divisor Bi has an irreducible component not contained in the previ-
ousBj . A theorem of Vojta [16, Theorem 2.4.1] asserts that for any divisorW on a nonsingular
variety V , the points in V.K/ that are S -integral points relative to W are not Zariski-dense in
V if W has at least � C r C dimV C 1 components, where � and r are the ranks of Pic0.V /
and the Néron–Severi group of V , respectively. Since Pic0.P21 / is trivial and P21 has a Néron–
Severi group of rank 2 (see [11, Example 6.6.1]), it follows that the set of points in P21 .K/ that
are S -integral relative to D4 lies in a proper closed subvariety of P21 .

Corollary 3.2. LetK be a number field, S a finite set of primes inK, and f W P1 ! P1
be a rational function with degree d � 2. There is a proper closed subvariety Y of P21 such
that for any u;w 2 P1.K/, the subvariety Y contains all but at most finitely many points
.f ım.u/; f ın.w// for which f ım.u/ is S -integral relative to f ın.w/.
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Proof. Let Z be as in Theorem 3.1, let ¹z1; : : : ; zeº be the set of preperiodic points of
f in K (note that this set must be finite), and let

(3.1) Y D .f ı4; f ı4/.Z/ [
� e[
iD1

P1 � ¹ziº
�
[

� e[
iD1

¹ziº � P1
�
:

If u or w is preperiodic for f , then .f ım.u/; f ın.w// 2 Y for all m; n, so we may assume
that neither u nor w is preperiodic.

Now, by [15, Theorem A], for any fixed n, there are at most finitely many m such that
f ım.u/ is S -integral relative to f ın.w/, because no f ın.w/ is exceptional; likewise, there
are at most finitely many n such thatf ın.w/ is S -integral relative to f ım.u/. Thus, there are
at most finitely many .m; n/ with min.m; n/ � 4 such that .f ım.u/; f ın.w// is S -integral
relative to D0. By (2.1), we see that if m; n � 4, then .f ı.m�4/.u/; f ı.n�4/.w// is S -integral
relative to D4 if and only if .f ım.u/; f ın.w// is S -integral relative to D0. Applying Theo-
rem 3.1, one sees then that the set of points of the form .f ım.w/; f ın.u// that are S -integral
relative to D0 is contained in Y .

Corollary 3.3. LetK be a number field, S a finite set of primes inK, and f W P1 ! P1
be a rational function with degree d � 2 that is not conjugate to a powering map x˙d . Let
u;w 2 P1.K/ be points that are not preperiodic for f . Then the set of .m; n/ 2 N2 such that
f ım.u/ is S -integral relative to f ın.w/ is finite.

Proof. Let Y be defined in equation (3.1). Applying Corollary 3.2 we obtain that
.f ım.u/; f ın.w// 2 Y if f ım.u/ is S -integral relative to f ın.w/, apart finitely many
exceptions. Since u and w are not pre-periodic, for no .m; n/ 2 N2 can happen that
.f ım.u/; f ın.w// 2 .

Se
iD1 P1�¹ziº/, so we will have .f ım.u/; f ın.w// 2 .f ı4; f ı4/.Z/.

The set of points in .f ı4; f ı4/.Z/ that are S -integral relative toD0 is finite by the main theo-
rem of [4, Appendix], since f is not conjugate to a powering map x˙d . Again by the fact that
neither u nor w is pre-periodic, we obtain the finiteness of the possible exponents .m; n/.

4. Effective degeneracy

We will now prove the following theorem.

Theorem 4.1. Let K be a number field and S a finite set of places of K including all
the archimedean places. Let f W P1 ! P1 be a rational function of degree d � 2 that is not
conjugate to a powering map x˙d . Then there is a computable integer N such that the set of
points in P21 .K/ that are S -integral relative to DN lies in an effectively computable proper
closed subvariety of P21 .

If f has no periodic critical points, then any point P21 is contained in at most 2d � 1
distinct divisors Bm (see Lemma 4.3), and one may obtain a proof of Theorem 4.1 very quickly
via the results of [12]. When f does have periodic critical points, however, we follow a more
complicated strategy. We choose a large N (see (4.8)), resolve the embedded singularities
of DN at all of the points that are contained in more than 2d � 1 distinct divisors Bm with
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m � N via a birational map � W X ! P21 , and then apply a Runge-type result to ��DN in X .
The idea here is that resolving these singularities separates the divisors Bi over the embedded
singularities. We begin by stating a Runge-type result, suggested by the referee.

4.1. A Runge-type result.

Proposition 4.2. Let X be a nonsingular projective variety over a number field K and
let S be a finite set of places of K containing the archimedean places. Let D be an effective
divisor on X . Let s D jS j. Suppose that for any s points P1; : : : ; Ps 2 X.K/, there exists an
effective divisor E defined over K such that

(i) SuppE � SuppD;

(ii) �.E/ > 0, where �.E/ is the usual Kodaira–Iitaka dimension ofE (that is, the dimension
of the ring

L1
dD0H

0.X; dE/ minus one); and

(iii) P1; : : : ; Ps … SuppE.

Then the set of points ofX.K/ that are S -integral relative toD lies in an effectively computable
proper closed subset of X .

Proof. Let E be the set of effective reduced divisors E with SuppE � SuppD and
�.E/ > 0. To each E 2 E , we associate a nonconstant rational function �E such that �E has
no poles outside of SuppE; after multiplying �E by a nonzero element of K, we may assume
that, for v … S , we have j�E .P /jv � 1 for all P 2 X.K/ such that P is S -integral relative to
D. Let ˆ D ¹�E j E 2 Eº.

Let v be a place of S . By [12, Lemma 2.1], there is an effectively computable constant
Cv such that for any E 0 � E with the property that

T
E2E 0 SuppE D ;, we have

(4.1) min
E2E 0
j�E .P /jv � Cv for all P 2 X.K/.

Let P 2 X.K/ be S -integral relative to D and let

EP;v D
®
E 2 E j j�E .P /jv > Cv

¯
:

Then, by equation (4.1), we have that
T
E2EP;v

SuppE 6D ;. For each v 2 S , we choose
Pv 2

T
E2EP;v

SuppE. We obtain s points in this way, so our hypotheses imply that there is
an E 2 E such that none of these Pv are in SuppE. This means that, for each v 2 S , we have
E … EP;v. Thus, for each v 2 S , we have j�E .P /jv � Cv. We also have j�E .P /jv � 1 for all
v … S , since P is S -integral relative to D. Thus, the height of �E .P / is uniformly bounded
by an effective constant; this implies that �E .P / has only finitely many possibilities, so P lies
in finitely many hypersurfaces of equation �E .P / D c, where c belongs to a finite, effectively
computable set.

Note that in order for the method above to be truly effective, one must be able to compute
the �E effectively. In our situation, this is easily done (see Remark 4.9).

Since we will apply Proposition 4.9 to strict transforms of the divisors Bi , we will
need to know when these strict transforms have positive Kodaira–Iitaka dimension. The term
e1.QIDi /e2.QIDi / (see (4.3)) will provide a convenient lower bound for the self-intersection
of strict transforms of the Bi .
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4.2. Intersection points of Bi .

Lemma 4.3. If the intersection of 2d distinct divisors Bm0 ; : : : ; Bm2d�1 contains a
point p D .�; �/, then there are distinct i and j such that f ı.mi�1/.�/ D f ı.mi�1/.�/ is a
periodic critical point with period dividing some mj �mi .

Proof. First, we note that if .c; c/ 2 B1 \ B0, then .c; c/ has multiplicity greater than
1 on D1. Since D1 is defined by the equation f .x/ D f .y/, this means that c must be
a ramification point of f . Now suppose that .�; �/ are in Bm and Bn for m < n. Then
.f ı.n�1/.�/; f ı.n�1/.�// 2 B1 \ B0 so f ı.n�1/.�/ D f ı.n�1/.�/ D c for c a ramification
point of f . Thus, if .�; �/ 2 Bm0 \ � � � \ Bm2d�1 for m0 < m1 < � � � < m2d�1, then
f ı.mk�1/.�/ D f ı.mk�1/.�/ is a ramification point of f for k D 1; : : : ; 2d � 1. Since f has
at most 2d �2 ramification points, we must have f ı.mi�1/.�/ D f ı.mj�1/.�/ for some i 6D j
with i; j 2 ¹1; : : : ; 2d � 1º.

Since f has only finitely many ramification points, we may choose an M such that the
period of each periodic ramification point divides M . Note that a point x is periodic for f
if and only if it is periodic for f ıM , since if .f ıM /ık.x/ D x, then f ıMk.x/ D x and
if f ık.x/ D x, then .f ıM /ık.x/ D .f ık/ıM .x/ D x. Thus, every periodic ramification
point of f ıM is a periodic ramification point for f and is a fixed point of f ıM . Proving
Theorem 4.1 for an iterate f ıM of f is equivalent to proving it for f itself; thus, we may
suppose, in view of the previous remark, that all the periodic ramification points of f are fixed
points for f . After extending K, we may further assume that every fixed ramification point of
f is in P1.K/.

Since f is not conjugate to a powering map, it has at most one exceptional point. Possibly
after changing coordinates, we may assume that the exceptional point is the point at infinity.
Thus, when f has an exceptional point, we will say that f is a polynomial. When f is not a
polynomial, we may assume, possibly after changing coordinates, that no iterate f ım.1/ is a
ramification point of f .

Possibly after replacing f byf ı2, we may assume that d � 4, so

(4.2) di D d
i
� d i�1 �

3d i

4

for all i > 0.
For any point Q D .�1; �2/ 2 P21 that is contained in the intersection of at least 2d

distinct divisors Bm, we define NQ to be the smallest non-negative integer n such that f n.�1/
and f n.�2/ are equal to the same fixed ramified point of f ; that is,

NQ WD min
®
n 2 N j f n.�1/ D f

n.�2/ is a fixed ramified point of f
¯
:

Note that there may be non-periodic ramification points z such that f ım.z/ is a fixed
ramified point of f . When such z exist, we defineMf to be the largest integerm � 1 for which
there is a non-periodic ramified point z1 and a fixed ramified point z2 such that f ım.z1/ D z2
and f ı.m�1/.z1/ 6D z2. When no such z exist, we define Mf to be zero.

For Q D .�1; �2/ 2 P21 .K/, we define

(4.3) e1.QIDi / WD ef ıi .�1/ and e2.QIDi / WD ef ıi .�2/

when Q 2 Di and e1.QIDi / D e2.QIDi / D 0 for Q … Di .
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26 Corvaja, Sookdeo, Tucker and Zannier, Integral points in two-parameter orbits

We will also use the following simple equality in various places:

(4.4) ef ıi .z/ D

iY
`D1

ef
�
f ı.`�1/.z/

�
:

Lemma 4.4. Let Q D .�1; �2/ 2 P21 .K/ be a point that is contained in the intersection
of 2d distinct divisors Bm0 ; : : : ; Bm2d�1 . Then there are at most Mf C 2 divisors Bi with
i � NQ such that Q 2 Bi .

Proof. If NQ �Mf � 1 � 0, this is vacuously true, so suppose NQ �Mf � 1 � 0. Let
z be the fixed ramified point such that f ıNQ.�1/ D f ıNQ.�2/ D z. By the minimality ofNQ,
we have f ı.NQ�1/.�j / 6D z for either j D 1 or j D 2. Then f ı`.�j / is not a ramified point
of f for ` < NQ �Mf by our definition of Mf . Hence ej .QIDNQ�Mf �1/ � 1 by (4.4).
This means that Q is not a singular point of DNQ�Mf �1; thus, Q is contained in at most one
Bi � DNQ�Mf �1. Since there are Mf C 1 integers i with NQ �Mf � i � NQ, our proof is
complete.

Lemma 4.5. Let ı > 0. Let Mı be a positive integer such that�d � 1
d

�Mı
<
ı

2
:

Then, for any point Q 6D .1;1/ in P21 contained in the intersection of 2d distinct divisors
Bm0 ; : : : ; Bm2d�1 , we have, for all i � NQ CMı ,

(4.5) ŒK.Q/ W K�e1.QIDi /e2.QIDi / < ıd
2
i :

Proof. Let Q D .�1; �2/. Since f ıNQ.�1/ D f ıNQ.�2/ D z 2 K, we have

ŒK.�j / W K�ef ıNQ .�j / � d
NQ for j D 1; 2:

Therefore,
ŒK.Q/ W K�e1.QIDNQ/e2.QIDNQ/ � 2d

2
NQ
;

because .dNQ/2 � 2d2NQ by (4.2). We have ef .z/ � d � 1, since z is not totally ramified.
Thus, for all i > NQ, we have

ŒK.Q/ W K�e1.QIDi /e2.QIDi / � 2
�d � 1

d

�i�NQ
d2i ;

by (4.4). Therefore, we have ŒK.Q/ W K�e1.QIDi /e2.QIDi / < ıd2i for all i � NQ CMı ,
as desired.

4.3. Blowing up. This section originates from comments by the referee, whom we
thank. Previously our proof was different and probably less transparent and more complicated.

As noted earlier, we wish to apply Proposition 4.2 to the pull-back of a suitable DN
under a sequence of blow-up maps. As usual, when � W X ! Y is an onto birational map that
is an isomorphism away from W � Y and Z is a Zariski closed subset of X , we define the
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strict transform QZ of Z in X as the closure of ��1.Z n .W \ Z// in X . In our situation, Y
will always be a nonsingular surface, Z will have dimension 1, and W will have dimension 0.
For ease, when Z � Y is a Zariski closed subset of dimension 1, we will call Z a curve. We
call � W X ! Y a minimal resolution of the embedded singularity of a curve Z � Y at Q
if � is obtained by repeatedly blowing up the singular points lying over Q until one obtains a
nonsingular equation for QZ near the points lying over Q.

We begin with a few words on the equation defining Di near a point Q D .�1; �2/. The
curveDi is defined by f ıi .x/ D f ıi .y/, and f ıi can be written in terms of a local parameter
as

z
e
f ıi

.�j /

j C higher order terms

near �j for j D 1; 2. Thus, f ıi can be written as t
e
f ıi

.�j /

j in the completed ring KŒŒtj �� near
�j . Therefore, any singularity on any divisor Di is analytically isomorphic to a singularity of
the form t

e1
1 � t

e2
2 D 0. The resolution of such singularities is simple and well known. Here

we follow [11, I.4, V.3]. Blowing up, one makes the substitution u2t1 D t2u1 for projective
coordinates Œu1 W u2� and obtains

t
e1
1 � t

e2
1 .u2=u1/

e2 for u1 6D 0 and t
e1
2 .u1=u2/

e1 � t
e2
2 for u2 6D 0:

Canceling, one obtains a lower order singularity

(4.6) t
e1�e2
1 � .u2=u1/

e2 or .u1=u2/
e1 � t

e2�e1
2 :

Proceeding in this way in the manner of the Euclidean algorithm, one eventually obtains the
equation zgcd.e1;e2/� 1. Observe that if gcd.e1; e2/ > 1, then the embedded singularity is only
resolved when the local equation takes the form zgcd.e1;e2/ � 1, and that each blow-up takes
place at a single singular point lying over Q.

The following lemmas are completely standard.

Lemma 4.6. Let Z be a curve on a nonsingular surface Y , let � W X ! Y be the
blow-up of P21 at the point Q 2 Y.K/, let m be the multiplicity of Q on Z, and let QZ be the
strict transform of Z in X . Then QZ2 D Z2 �m2:

Proof. The divisor ��Z is linearly equivalent to QZ C mE where E is the exceptional
divisor for � . We have E2 D �1 and E � QZ D m (see [11, V.3]). Thus,

Z2 D .��Z/2 D . QZ CmE/2 D QZ2 C 2m2 �m2 D QZ2 Cm2:

Lemma 4.7. Let Z be a curve on a nonsingular surface Y , and let Q 2 Z.K/ be a
point of Z such that the equation defining Z near Q takes the form t

e1
1 � t

e2
2 D 0, up to

analytic isomorphism. Let �Q W X ! Y be a minimal resolution of Z at Q, and let QZ be the
strict transform of Z in X . Then QZ2 � Z2 � e1e2.

Proof. We use induction on max.e1; e2/. If max.e1; e2/ D 1, then Z is nonsingular at
Q, so no blow-up is necessary to desingularize and Z D QZ. Thus, we assume without loss of
generality that min.e1; e2/ D e1 > 1. If �0 W X 0 ! Y is the blow-up of Y at Q, and QZ0 is the
strict transform ofZ under �0, then QZ20 D Z

2�e21 by Lemma 4.6. As in (4.6), the substitution
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t1 D t2u1 transforms the singularity into the form .u1=u2/
e1 � t

e2�e1
2 . If e2 � e1 D 0, then

the singularity is resolved, and our proof is complete since e21 � e1e2. Otherwise, QZ0 contains
a single point Q0 such that �0.Q0/ D Q. We may factor �Q as �0 ı �Q0 ; then QZ is also the
strict transform of QZ0 under �Q0 . By induction, we have

QZ2 � QZ20 � e1.e2 � e1/ D Z
2
� e21 � e1e2 C e

2
1 D Z

2
� e1e2:

Since each Bi is a divisor of type .di ; di / on P21 (the projection on each coordinate
has degree di ), we see that B2i D 2d2i (see [11, V.2], for example). We use this, along with
Lemma 4.7, to get lower bounds on the self-intersection of strict transforms ofBi under various
blowing up maps.

When Q 6D .1;1/ or f is not a polynomial, we can expect that the product
e1.QIDi /e2.QIDi / will be small relative to d2i for large i , as we saw in Proposition 4.5.
When Q D .1;1/ and f is a polynomial, however, we have e1.QIDi /e2.QIDi / D .d i /2;
thus, we treat this case specially in the following.

Proposition 4.8. Let Q1; : : : ;Qt 2 P21 .K/ be points that are contained in at least 2d
distinct divisors Bm and let i be a positive integer such that i > NQj for j D 1; : : : ; t . Let
� W X ! P21 be the minimal resolution of the embedded singularities at all of theK-conjugates
of Q1; : : : ;Qt on DN for some N � i , and let QBi be the strict transform of Bi in X . If

(4.7)
tX

jD1
Qj 6D.1;1/

ŒK.Qj / W K�e1.Qj IDi /e2.Qj IDi / �
d2i
9
;

then �. QBi / > 0.

Proof. It will suffice to show that the self-intersection QB2i is positive, by the Riemann–
Roch theorem for surfaces (see [11, V.1]). Write Qj D .�

Œj �
1 ; �

Œj �
2 /. Since i > NQj , we see

that e1.Qj IDi / and e2.Qj IDi / are each divisible by ef .z/ > 1, where z is the ramified fixed
point such that f ıNQj .� Œj �1 / D f

ıNQj .�
Œj �
2 / D z. Thus, the embedded singularity of Di at

each conjugate of Qj is resolved as soon as more than one point lies over Qj in the blow-up;
in particular, a minimal resolution for the embedded singularity of DN at a conjugate of Qj is
also a minimal resolution for the embedded singularity of Di at a conjugate of Qj .

Now, if .1;1/ is not among theQj (which is necessarily the case when f is not a poly-
nomial), then it follows immediately from Lemma 4.7 and (4.7) thatD2i � QD

2
i <

1
9
.di /

2 < 2d2i .
If f is a polynomial and .1;1/ D Qj for some j , then (4.7), (4.2), and Lemma 4.7 combine
to give

D2i �
QD2i < .d

i /2 C
d2i
9
�
16d2i
9
C
d2i
9
< 2d2i :

Thus, in either event, we haveD2i � QD
2
i < 2d

2
i . SinceDi D B0C� � �CBi and QB` � QBk � B` �Bk

for any `; k, we see that

B2` �
QB2` � D

2
i �
QD2i < 2d

2
i for ` D 0; : : : ; i .

Since B2i D 2d
2
i , we must therefore have QB2i > 0, as desired.
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4.4. Proof of Theorem 4.1. We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let s D jS j and let ı D 1
9.sC1/

. Let

(4.8) N D s �max.Mı CMf C 2; 2d � 1/C .s C 1/

where Mı is as in Lemma 4.5. Let � W X ! P21 be the minimal resolution of the embedded
singularities of DN at all points that are contained in at least two 2d distinct divisors Bi with
0 � i � N .

We will show that ��DN satisfies the hypotheses of Proposition 4.2, and thus that the
set of points in X that are S -integral relative to ��DN lies in an effectively computable proper
closed subvariety of X . Now, if P 2 P21 .K/ is S -integral relative to DN and �.Q/ D P , then
Q is S -integral relative to ��DN , since � is defined over K. Hence, applying Proposition 4.2
on X will complete our proof.

Let P1; : : : ; Ps 2 X.K/. We will show that there is a divisor E with �.E/ > 0 and
SuppE � Supp��DN such that no Pi is contained in E.

For each j , letQj D �.Pj /. Suppose thatQj is in the intersection of at least 2d distinct
divisors Bi with 0 � i � N . Then by Lemma 4.4, there are at most Mf C 2 divisors Bi with
i � NQ such that Qj 2 Bi . Likewise, by Lemma 4.5, there are at most Mı divisors Bi with
i � NQ that fail to satisfy (4.5) with Q D Qj . Thus, by (4.8) , there are at least .s C 1/
divisors Bi0 ; : : : ; Bis 2 ¹B0; : : : ; BN º such that for all Qj 6D .1;1/ we have

(4.9) ŒK.Qj / W K�e1.Qj IDi`/e2.Qj IDi`/ < ıd
2
i`
:

Let �1 W X1 ! P21 be the minimal resolution of the embedded singularities of DN at all
the conjugates of all the Qj that are in the intersection of more than 2d � 1 divisors Bi with
0 � i � N . Then � factors as �1 ı �2 for a birational map �2 W X ! X1. Since the strict
transform QDN is nonsingular at all points lying above anyQj , we see that the strict transforms
QBi` do not meet in fibers over any of the Qj . Thus, for each Pj , there is at most one Bi` such

that �2.Pj / 2 QBi` . Since there are s C 1 different QBi` and only s different �2.Pj /, we thus
have at least one QBi` that does not contain any of the �2.Pj /. We denote this divisor as QBt . We
see immediately that ��2 QBt does not contain any of the Pj . Since �. QBt / D �.��2

QBt /, it will
suffice to show that �. QBt / > 0.

By (4.9) above, we have
tX

jD1
Pj 6D.1;1/

ŒK.Qj / W K�e1.Qj IDt /e2.Qj IDt / � sıd
2
i �

d2i
9
:

Thus, applying Proposition 4.8, we have �. QBt / > 0, as desired.

Remark 4.9. One can effectively compute rational functions � with pole divisors con-
tained in the support of some QBt by constructing rational functions � on P21 with pole divisors
contained in Bt that satisfy certain vanishing conditions at all the conjugates of the points
Q1; : : : ;Qs , and pulling them back to X . Indeed, the space of rational functions on P21 of

bidegree .dt ; dt / with no poles away from Bt has dimension 2d2t , while requiring that @
kC`�

@xk@y`

vanishes at Q for all 1 � k � e1 and 1 � ` � e2 imposes e1e2 conditions, so one can find
appropriate � QBt whenever the conditions of Proposition 4.8 are met.
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5. Effective finiteness

Silverman mentions that [15, Theorem A] can be made effective. We give a quick proof
of this fact before proving Theorem 1.1.

Theorem 5.1. LetK be a number field, S be a finite set of primes inK, and f WP1!P1
be a rational function with degree d � 2. Let a be a point that is not preperiodic for f , and
let b be a point that is not exceptional for f . Then the set of n such that f ın.a/ is integral
relative to b is finite and effectively computable.

Proof. Since b is not exceptional, f �4.b/ contains at least three distinct points. To
see this note that f �2.b/ contains at least two points, since b is not exceptional. If f �2.b/
contains exactly two points, then there is a totally ramified point in f �1.b/ or f �2.b/. This
point cannot be fixed by f so it cannot be in both f �3.b/ and f �4.b/. If f �3.b/ contains
only two points, then they must both be totally ramified, so f �4.b/must contain a point that is
not totally ramified (because f has at most two totally ramified points, by Riemann–Hurwitz),
which means that f �4.b/ contains at least three points.

For n � 4, we have that f ın.a/ is S -integral relative to b if and only if f ı.n�4/.a/
is S -integral relative to the points in f �4.b/. Changing coordinates, these f ı.n�4/.a/ are
solutions to the S -unit equation, which has an effective solution (see [6, Theorem 5.4.1], for
example).

Proof of Theorem 1.1. Theorem 4.1 delivers an effectively computable one-dimensional
subvariety Z such that the .m; n/ with m; n � N for which f ım.u/ is S -integral relative to
f ın.w/ are effectively computable for all .f ım.u/; f ın.w// outside of Z.

Let c be the number of components of Z. Let Iu;w denote the set of .m; n/ such
that f ım.u/ is S -integral relative to f ın.w/. By Theorem 5.1, we know that the set of
.m; n/ 2 Iu;w with min.m; n/ � c C N is effective computable. Thus, it suffices to show
that the set of .m; n/ 2 Iu;w with min.m; n/ � c C N and .f ım.u/; f ın.w// 2 Z is ef-
fective computable. Note that if m; n � c � r , then f ım.u/ can be S -integral relative to
f ın.w/ only when f ı.m�r/.u/ is S -integral relative to f ı.n�r/.w/. Hence, it suffices to find
all .m; n/ 2 Iu;w such that .f ım.u/; f ın.w// is in Z \ .f; f /.Z/ \ � � � \ .f; f /ıc.Z/. If
this intersection is finite, we are done. Otherwise, there is a common component X among
Z; .f; f /.Z/; : : : ; .f; f /ıc.Z/. Then .f; f /ıi .X/ is a component of Z for i D 0; : : : ; c.
Therefore, .f; f /ıi .X/ D .f; f /ıj .X/ for some c � j > i � 0. So .f; f /ıi .X/ is a periodic
component of Z.

Thus, we are left to show that the points of the form .f ım.u/; f ın.w// which are S -
integral relative to D0 on any periodic curve X for .f; f / can be computed. Now, since X
admits a self-map of degree greater than 1, X must have genus 0 or 1. Since X \D0 contains
at least one point, we see that if X has genus 1, then the integral points on X relative toD0 can
be effectively computed (see [1, 5]). If X has genus 0, and X \D0 contains a nonexceptional
point, then we are done by Theorem 5.1. If X \ D0 contains only an exceptional point z,
then after changing coordinates, we may write the restriction of .f; f /ı2 to X as a polynomial
P.t/, where z is the point at infinity. If X \D0 contains two exceptional points for P.t/, then,
after changing coordinates, we may write the restriction of .f; f /ı2 to X as a polynomial tn

(having its only pole at one exceptional point and its only zero at the other). In either case,
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after expanding S to a possibly larger set of primes S 0 we have that for any S 0-integral point
 on X , each iterate .f; f /ı2i ./ is S 0-integral relative to D0. This means that there are
infinitely many S 0-integral points relative to D0 on X , which contradicts the main theorem of
[4, Appendix].

6. Cyclic and exceptional cases

When f is conjugate to a powering map, we do not obtain a finiteness result. This can
be seen, for example, by considering the map f .x/ D x3 and the points u D 2, w D �2.
Then, if S is the set containing the archimedean place and the place 2, we have that f ım.u/ is
S -integral relative to f ım.w/ for all m. On the other hand, it is possible to give a reasonable
description of the .m; n/ such that f ım.u/ is S -integral relative to f ın.w/.

In [10], it is proved that if deg a; deg b > 2 for polynomials a and b, then the set of .m; n/
such that aım.u/ D bın.v/ forms a finite union of cosets of subsemigroups of N2 (that is a
finite union of additive translates of subsets of N2 that are closed under addition). Here, N is
considered to include 0 so any finite set of .m; n/ is a finite union of cosets of .0; 0/.

For a set of places S 0 containing all the archimedean places, we define

Iu;w;S 0 D
®
.m; n/ 2 N2

j f ım.u/ is S 0-integral relative to f ın.w/
¯
:

Proposition 6.1. Let f be conjugate to x˙d , let S be a finite set of places of K. Then,
for some finite set of places S 0 with S � S 0, the set Iu;w;S 0 is a finite union of effectively
computable cosets of subsemigroups of N2. Furthermore, the set Iu;w;S 0 is finite if u and w
are multiplicatively independent or if u and w are in the cyclic group generated by a non-
torsion element of K�.

Proof. After changing coordinates by an automorphism � 2 PGL2.K 0/, for K 0 a finite
extension of K, we can write �f��1.x/ D x˙d . Choose a set S 0 of primes that includes both
all the primes appearing in the coefficients or determinant of � as well as all the primes lying
over primes in S ; then for any P;Q 2 P1.K 0/, we have that P is S 0-integral relative to Q if
and only if �P is S 0-integral relative to �Q (note that this choice of S 0 depends only on f , not
on u or w). Thus, it suffices to prove the theorem when f .x/ D x˙d .

If f .x/ D x�d , then by considering the orbit of .u;w/ along with those of .f .u/; w/,
.u; f .w//, and .f .u/; f .w//, we reduce to the case where f .x/ D xd

2

for some d . If u or w
is zero or infinity, the conclusion is obvious. If neither u nor v is 0 or infinity, we may assume
that u and w are both S 0-units after expanding S 0. Then f ım.u/ � f ın.w/ is an S 0-unit if
and only if f

ım.u/
f ın.w/

� 1 is an S 0-unit. Thus, if .f ım.u/; f ın.w// is S 0-integral relative to D0,
then it lies on a curve of the form x � y D �y where � is an S 0-unit such that � C 1 is also an
S 0-unit. By [6, Theorem 5.4.1], the set of such � is finite and effectively computable. Thus, if
u and w are multiplicatively independent, then f ım.u/

f ın.w/
takes on any such value � at most once,

so there are at most finitely many .m; n/ such that f ım.u/ is S 0-integral relative to f ın.w/.
For any fixed value of 1 C � , the set of m; n such that ud

2m

=wd
2n

D 1 C � clearly forms a
finite union of cosets of subsemigroups of N2.

If u and w are both in the subgroup of K� generated by a single element z that is not a
root of unity, then we may write u D zA, w D zB . Then, we have zAd

m�Bdn D .1C �/ for
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one of the finitely many 1C � above whenever f ım.u/ is S 0-integral relative to f ın.w/. Now,
for any constant C , the set of .m; n/ such that Adm � Bdn D C is finite unless C D 0 (since
gcd.Adm; Bdn/ ! 1 to infinity as min.m; n/ ! 1), but when C D 0, we have � D 0,
which is not an S -unit. Hence, in this case there are at most finitely many .m; n/ such that
f ım.u/ is S 0-integral relative to f ın.w/.

When at least one of u or w is preperiodic, but neither of u or w is exceptional, it is easy
to see from Theorem 1.1 that the set of .m; n/ 2 N2 such that f ım.u/ is S -integral relative to
f ın.w/ forms a finite union of effectively computable cosets of subsemigroups of N2. When
u or w is exceptional, however, one should not expect there to be a particularly nice pattern to
the set of .m; n/ such that f ım.u/ is S -integral relative to f ın.w/. Benedetto–Briend–Perdry
[3] show that if f .x/ D x2 C x

p
, and v is the point at infinity, then for any set U of positive

integers, there is a point u 2 Qp such that f ım.u/ 2 Zp if and only ifm 2 U; although this is
only stated over Qp, it is very likely that one can find examples for many complicated infinite
U over Q. This problem can be overcome by enlarging S to a finite set of primes S 0 including
all the primes of bad reduction for f .

Proposition 6.2. Suppose that w is exceptional and that there is no m such that
f ım.u/ D w. Then for some finite set of places S 0 with S � S 0, the set Iu;w;S 0 is all of N2.

Proof. Arguing as in Proposition 6.1, we may change coordinates so that f ı2 is a poly-
nomial andw is the point at infinity and enlarge S to some S 0 where our notion of S 0-integrality
is not affected by the coordinate change. If we enlarge S 0 further to include all of the places
at which u, f .u/, or a coefficient of f ı2 has a pole, then f ı2m.u/ and f ı2m.f .u// are S 0-
integral relative to w for all m, so Iu;w;S 0 is all of N2.

7. Further questions

If f and g are two rational functions of degree d > 1 such that there are no z1; z2
such that f ı2.z1/ D gı2.z2/ with f ı2 ramifying at z1 and gı2 ramifying at z2 (a reasonably
“generic” condition), then f ı2.x/ � gı2.y/ D 0 gives a nonsingular curve corresponding to
a divisor D2 of type .2d; 2d/ on P21 . Since d � 2, we have that D2 C KX is ample for KX
a canonical divisor of P21 . Thus, Vojta’s conjecture [16, Conjecture 3.4.3] would imply that
the set of S -integral points relative to D2 must be degenerate. Hence, we may expect that an
analog of Theorem 3.1 holds in this case.
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