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Let ϕ : P1 −→ P1 be a rational map of degree greater than 1 defined over a number field k

with ring of integers ok. For each prime p of good reduction for ϕ, we let ϕp denote the

reduction of ϕ modulo p. A random map heuristic suggests that for large p, the propor-

tion of periodic points of ϕp in P1(ok/p) should be small. We show that this is indeed the

case for many rational functions ϕ.

1 Introduction

Let f be a polynomial in Z[x] of degree greater than 1. Then f induces a map fp : Fp −→ Fp

for each prime p via reduction modulo p. Any point α ∈ Fp will be preperiodic under fp;

the fact that Fp is finite means that there must be some i �= j such that fi
p(α)= f j

p(α). On

the other hand, α may not be periodic, since it is quite possible that there is no n> 0

such that fn
p(α)= α.

The model of random maps, along with the heuristic of the birthday problem,

suggests that for a typical α and a typical self-map ϕ of Fp, the size of the orbit

Orbϕ(α)= {α, ϕ(α), . . . , ϕm(α), . . .} will be about
√

p (see [1, 2, 4, 21]). Hence, one might

guess that, for a typical polynomial reduction, fp, there is about a 1/
√

p chance that a

given α is fp-periodic, and that the proportion of fp-periodic points in Fp is about 1/
√

p.
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In particular, one would then have

lim
p→∞

#Per
(

fp
)

p
= 0,

where Per( fp) is the set of points in Fp that are fp-periodic.

More generally, one might consider this problem for rational functions over

number fields. Let k be a number field and let ϕ ∈ k(x) be a rational function of degree

greater than 1. For all but finitely many primes p in the ring of integers ok of k, reducing

modulo p gives rise to a well-defined map ϕp : P1(ok/p)−→ P1(ok/p). We let N(p) denote

the number of elements in the residue field ok/p. Then one might expect for a typical ϕ,

taking the limit over the p such that ϕp is a well-defined map on P1(ok/p), one should have

lim
N(p)→∞

#Per(ϕp)

N(p)+ 1
= 0. (1)

Of course, this might not necessarily be the case. For example, if f(x) is a power-

ing map f(x)= xn, then fp is a bijection for all p �≡ 1 (mod n) and thus all points in Fp are

fp-periodic for all p �≡ 1 (mod n). A more general family of examples comes from Dickson

polynomials, which are defined by f(x + a/x)= xn + (a/x)n (when a= 0, one has a power-

ing map). Fried [5] showed that if f is any polynomial over a number field k such that fp

is a bijection for infinitely many primes p in ok, then f can be a written as a composition

of Dickson polynomials and linear polynomials (polynomials of the form ax + b). More

recently, Guralnick et al. [8] have given a classification of all indecomposable rational

functions ϕ over number fields such that ϕp is a bijection for infinitely many primes p;

the classification is substantially more complicated. The rational functions classified by

Guralnick, Müller, and Saxl are often referred to as indecomposable exceptional rational

functions (for a more general discussion of exceptional maps, see [9]).

Question 1.1. Let k be a number field. Can one classify all rational functions ϕ ∈ k(x) of

degree greater than 1 over a number field k such that (1) fails to hold? �

It is possible that all rational functions such that (1) fails to hold come from

exceptional rational functions, but we are not able to prove it at the present time. How-

ever, we have some evidence that this may be the case. We can show that for “most”

rational functions ϕ of degree d, the proportion #Per(ϕp)/(N(p)+ 1) becomes small for

large N(p). To phrase this precisely, we need a bit more notation.

Let k be a number field. Given a point (a0, . . . ,ad,b0, . . . ,bd) in A2d+2(k̄), we set

	a= (a0, . . . ,ad), 	b = (b0, . . . ,bd), p	a = adxd + · · · + a0, q	b = bdxd + · · · + b0, and ϕ	a,	b = p	a/q	b. If

the resultant of p and q is nonzero and either ad or bd is nonzero, then ϕ	a,	b = p	a/q	b is a
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rational function of degree d in k(x). We denote the set of such (	a, 	b) as Ratd. Thus, Ratd

is a Zariski-open subset of A2d+2.

Theorem 1.2. Let ε > 0 and d> 1. With notation as above, there is a Zariski-dense open

subset Ud,ε of Ratd such that for any number field k and any (	a, 	b) ∈ Ud,ε(k), we have

lim sup
N(p)→∞

primes p of ok

#Per
(
ϕ	a,	b

)
N(p)+ 1

≤ ε.
�

We are also able to prove the following.

Theorem 1.3. Let ϕ be a rational function of degree d> 1 such that for any two distinct

critical points α1, α2 of ϕ and any positive integers m and n, we have ϕm(α1) �= ϕn(α2)

unless m = n and α1 = α2. Then

(a)

lim inf
p→∞

#Per(ϕp)

N(p)+ 1
= 0;

(b) if k is algebraically closed in the splitting field of ϕ(x)− t over k(t), then

we have

lim
p→∞

#Per
(
ϕp

)
N(p)+ 1

= 0. �

Theorem 1.3 thus shows that there are essentially only two obstacles to showing

that (1) holds for a given rational function ϕ: (i) intersections between the orbits of the

critical points of ϕ and (ii) nontrivial algebraic extensions of the ground field k occurring

in the splitting field for ϕ(x)− t over k(t). To some extent, one can overcome the second

problem by passing to an extension of k and asking instead that

lim inf
N(p)→∞

#Per
(
ϕp

)
N(p)+ 1

= 0, (2)

as we do in (a) above. Note, the condition that k is algebraically closed in the splitting

field of ϕ(x)− t over k(t) is the generic case. This condition holds whenever Gal((ϕ(x)−
t)/k̄(t))∼= Sd which, by the proof of Theorem 1.2, holds for an open dense subset of Ratd.

Question 1.4. Let k be a number field. Can one classify all rational functions ϕ ∈ k(x) of

degree greater than 1 over a number field k such that (2) fails to hold? �

One interesting fact is that (2) holds for powering maps but not for all Dickson

polynomials. While the powering map f(x)= xn induces a bijection fp : Fp −→ Fp when
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p �≡ 1 (mod n), it is easy to see that when p≡ 1 (mod nr), we have #Per( fp)

p ≤ 1
nr + 1

p. Thus,

in this case, we have lim infp→∞ #Per( fp)/p= 0 (see Example 7.1). However, as we shall

see in Example 7.2, when f is the Dickson polynomial f(x + 1/x)= xd + (1/x)d where d

is a power of an odd prime, we have

lim inf
p→∞ #Per

(
fp
)
/p= 1

2
,

and if f(x + 1/x)= xd + (1/x)d for d a power of 2, then

lim inf
p→∞ #Per

(
fp
)
/p= 1

4
.

(Dickson polynomials of the form f(x + 1/x)= xn + (1/x)n are called monic Chebyshev

polynomials.)

In the case of quadratic polynomials, Chebyshev polynomials and their conju-

gates are the only polynomials such that (2) fails to hold.

Theorem 1.5. Let k be a number field and let f ∈ k[x] be a quadratic polynomial. Then

lim inf
p→∞

#Per
(

fp
)

N(p)+ 1
= 0

unless there is a linear polynomial σ = ax + b ∈ k[x] such that σ−1 fσ is equal to the

Chebyshev polynomial x2 − 2. �

More generally, we are able to treat Question 1.4 for all maps of the form f(x)=
xd + c (see Theorem 6.5). The fact that such maps can be treated is perhaps not surprising

in light of related results of [10, 12].

Our approach follows that of Odoni [17], though with some differences. We begin

with a definition.

Definition 1.6. If H is a group acting on a set S, then we define FPP(H) to be the propor-

tion of elements of H fixing at least one s ∈ S. �

Let ψ be a rational function defined over Fq, let Kn be the splitting field of

ψn(x)− t over Fq(t), and let Gn = Gal(Kn/Fq(t)); suppose that Fq is algebraically closed

in Kn. Since Gn acts on the set of roots of ψn(x)− t, it makes sense to consider FPP(Gn).

The Chebotarev density theorem for function fields, due to Murty and Scherk [16],

implies that when FPP(Gn) is small, then the image of P1(Fq) under ψn is small pro-

vided that q is sufficiently large. Since a periodic point is in the image of P1(Fq) under

ψn for every n (see Lemma 5.2), this means that ψ has few periodic points.
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We will apply this idea to ψ arising from the reduction ϕp of a rational function

over a number field k modulo a prime p in k. We will see, via Proposition 4.1, that for

all but finitely many primes p, the Galois groups of the splitting fields of ϕn
p(x)− t are

the same as the Galois groups of the splitting fields of ϕn(x)− t over k(t); let us call this

group Gn, as above. Then it suffices to show that FPP(Gn) is very small. This can be

difficult to do in general, but Odoni [17, Lemma 4.3] has shown that if Gn is the n-fold

wreath product [G]n (see Section 6) of some transitive group G, then limn→∞ FPP(Gn)= 0.

In the “purely geometric” setting (i.e., extensions of C(t)), we remark that Jones has

shown [13] that limn→∞ FPP(Gn)= 0 also holds for a large class of post-critically finite

polynomials, and this will play an important part in the proof of Theorem 6.5.

We now give a brief outline of the paper. After some preliminaries in Section 2,

we state and prove Theorem 3.1, which gives conditions guaranteeing that Gn = [G]n.

A key fact here is that primes in the critical orbit ramify “disjointly” in the sequence Kn

of splitting fields of ϕn(x)− t. That is, for each n we can find primes that are unramified

in the splitting field of Kn−1 and, in each of the subextensions of the splitting field of

Kn over Kn−1 that arise from adjoining to the splitting field of Kn−1 over k the roots of

ϕ(x)− αi where αi is a root of ϕn−1(x)− t, at least one such prime ramifies that ramifies in

no other subextension. Following that, we show that Galois groups stay the same after

almost all specializations, provided that the extensions are geometrically integral, in

Section 4. Next, in Section 5, we use the Murty–Scherck effective Chebotarev theorem [16]

to bound proportions of periodic points by proportions of fixed-point elements of Galois

groups. We are then able to prove our main theorems on proportions of periodic points

in Section 6. We conclude with an elementary discussion of periodic points of powering

maps, Chebyshev maps, and Lattès maps.

We note that many of the results in this paper, Theorem 3.1 in particular, should

generalize to higher dimensional situations. We plan to treat the case of higher dimen-

sions in a future paper.

2 Preliminaries

Let k be any field. We say that F/k is a function field with field of constants k if F is a

finite extension of k(t) where t is transcendental over k and k is algebraically closed in

F (i.e., F contains no elements outside of k that are algebraic over k). Define PF to be the

set of all p such that p is the maximal ideal of some valuation ring of F/k.

Let ϕ ∈ k(x) be a rational function of degree d. We write ϕ(x)= p(x)/q(x), where

p(x),q(x) ∈ k[x], and we let P (X,Y) and Q(X,Y) be the degree d homogenizations of p
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and q, respectively; that is, P (X,Y)= Ydp(X/Y) and Q(X,Y)= Ydq(X/Y). We set P0 = P

and Q0 = Q and define Pn and Qn recursively by Pn(X,Y)= P (Pn−1(X,Y), Qn−1(X,Y))

and Qn(X,Y)= Q(Pn−1(X,Y), Qn−1(X,Y)) for n≥ 1. Then, defining pk = Pk(X,1) and

qk = Qk(X,1), any root of ϕn(x)− t is a root of

pn(x)− tqn(x), (3)

which is a polynomial with coefficients in k(t). If k is a number field and p is a nonzero

prime in its ring of integers ok, we say that the rational function ϕ(x), defined as

above, has good reduction at p if all of the coefficients of p and q have p-adic abso-

lute value less than or equal to 1 and for all α ∈ k̄, we have max{|P (α,1)|p, |Q(α,1)|p} = 1

and max{|P (1, α)|p, |Q(1, α)|p} = 1.

Let A be a Dedekind domain with fraction field K, let P (x) ∈ K[x], and L be the

splitting field of P (x) over K. It is a standard result that any prime of A that ramifies

in the integral closure of A in L must divide Δ(P (x)), the usual polynomial discriminant

of P (x) (see, e.g., [11] or [14]). (Here and elsewhere in this paper, if a prime p is said to

divide an element α of OK , we mean that vp(α) > 0.) Now consider the case where L is the

splitting field of ψ(x)− t over k(t), where ψ(x) ∈ k(x). We can write ψ(x)= p(x)
q(x) for some

p(x),q(x) ∈ k[x] and any prime of k[t] that ramifies in L must divide Δ(p(x)− tq(x)). In [3],

Cullinan and Hajir show that one may calculate the discriminant in terms of the critical

points of ψ(x).

Lemma 2.1. ([3, Proposition 1]) We have

Δ(p(x)− tq(x))= C Res
(
p′(x)q(x)− p(x)q′(x), p(x)− tq(x)

)
= C ′ ∏

a∈ψc

(ψ(a)− t)e(a/ψ(a)) ,

where C ,C ′ ∈ k are constants, ψc = {a :ψ ′(a)= 0}, and e(a/ψ(a)) is the ramification index

of a over ψ(a). �

Thus, we see that any prime p of k[t] that ramifies in a splitting field for

p(x)− tq(x) must divide
∏

a∈ψc
(ψ(a)− t)e(a/ψ(a)).

We now introduce wreath product actions on roots of iterates of polynomials.

Since we are working with Galois groups that may not be the full symmetric group, we

need slightly more technical definitions than those of [17].

Definition 2.2. Let K be a field. Let ψ(x), γ (x) be rational functions in K(x) with

deg(ψ)= 	, deg(γ )= d, such that ψ(γ (x)) has 	d distinct roots in K̄. A ψ, γ -compatible
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numbering on the roots of ψ(γ (x)) is a numbering that assigns to each root a unique

ordered pair (i, j) ∈ {1, . . . , 	} × {1, . . . ,d} such that if α1, . . . , α	 are the roots of ψ , then

the set {i} × {1, . . . ,d} is assigned to the roots of γ (x)− αi. �

Definition 2.3. Let G and H be groups acting on the finite sets {1, . . . , 	} and {1, . . . ,d},
respectively. We denote the wreath product of G by H as G[H ], and define it by its action

on {1, . . . , 	} × {1, . . . ,d} as follows. We write σ ∈ G[H ] as (π; τ1, . . . , τ	) where π ∈ G, and

τ1, . . . , τ	 ∈ H. Then σ(i, j)= (π(i), τi( j)). �

Definition 2.4. Let G be a group acting on the set {1,2, . . . ,d}. The nth wreath power

of G is defined by [G]1 = G and [G]n = [G]n−1[G] (note that [G]n then acts naturally on

{1,2, . . . ,d}n.) �

The following lemma generalizes [17, Lemma 4.1].

Lemma 2.5. Let ψ(x), γ (x) ∈ K(x) with deg(ψ)= 	,deg(γ )= d, 	,d≥ 1, such that ψ(γ (x))

has 	d distinct roots in K̄. Assume that ψ is irreducible over K. Let α1, . . . , α	 be the

roots of ψ(x), Mi be the splitting field of γ (x)− αi over K(αi), and G := Gal(ψ(x)/K).

Let H = Gal(M1/K(α1)). As Gal(Mi/K(αi))∼= H for all i = 1, . . . , 	, there is an embedding

ι : Gal(ψ(γ (x))/K) ↪→ G[H ]. Furthermore, there is a ψ, γ -compatible numbering on the

roots such that Gal(ψ(γ (x))/K)≤ G[H ]. �

Proof. We may write

ψ (γ (x))=
	∏

i=1

(γ (x)− αi) .

We will construct the desired numbering on the roots of ψ(γ (x)). First choose any num-

bering (1,1), . . . , (1,d) on the roots of γ (x)− α1, so that each root is identified with an

ordered pair (1, j). For each i = 2, . . . , 	, choose θi ∈ Gal(ψ(γ (x))/K) such that θi(α1)= αi.

Since θi acts on the splitting field of ψ(γ (x)), we can consider the action of θi on each of

the roots (1,1), . . . , (1,d) of γ (x)− α1. Note, θi(1, j) is a root of γ (x)− αi for each j since

θi must commute with γ . Number the roots of γ (x)− αi so that θi(1, j)= (i, j).

Let σ ∈ Gal(ψ(γ (x))/K). Then σ induces a K-automorphism π that permutes

{α1, . . . , α	}. Thus, π ∈ G. Now fix i and note that σ(i, j)= (π(i), s) for some s ∈ {1, . . . ,d}.
This defines a map τi ∈ Perm(1, . . . ,d) by τi( j)= s. Then σ(i, j)= (π(i), τi( j)) so, using the

above wreath product notation, σ = (π; τ1, . . . , τ	) ∈ G[Sd]. It remains to show τi ∈ H for

each i. Consider θ−1
π(i)σ θi(1, j)= θ−1

π(i)σ (i, j)= θ−1
π(i)(π(i), τi( j))= (1, τi( j)). So θ−1

π(i)σ θi fixes α1

and θ−1
π(i)σ θi|M1 = τi and hence, τi ∈ H . �
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3 Criteria for Wreath Product

Let k be a general field and ϕ(x) ∈ k(x) be a rational function with degree d, such that

ϕ′(x) �= 0. Note, the roots of ϕn(x)− t are the roots of pn(x)− tqn(x), and pn(x)− tqn(x) is

separable. To see this, note that since pn(x)− tqn(x) is irreducible over k(t), if it has a

double root, we must have p′
n(x)− tq′

n(x)= 0 for all x. Then (ϕn)′ = qnp′
n−pnq′

n
(qn)2

= 0 for all x.

But since we assumed ϕ′(x) �= 0, (ϕn)′(x) �= 0 by induction on n.

Let Kn be the splitting field of ϕn(x)− t over k(t), E = K1 ∩ k̄, and Gn :=
Gal(Kn/E(t)). We let G = G1. We let ϕc denote the critical points of ϕ in P1(k̄). We also

adopt some notation regarding extension of primes in finite extensions of function fields.

Let L1 ⊆ L2 be a separable finite extension of function fields. If p is a prime with discrete

valuation ring Op, then we say that the prime q of L2 extends p in L2/L1 if q appears

in the factorization of p in the integral closure of Op in L2. (This terminology is fairly

standard.) Likewise, in the language of points, we say that a point β ∈ PL2 extends a

point α ∈ PL1 in L2/L1 if the prime ideal corresponding to β extends the prime ideal cor-

responding to α in L2/L1.

Our first main theorem gives conditions that ensure that Gn
∼= [G]n. This is simi-

lar to but more general than some recent work of Pink [18, Theorem 4.8.1] for quadratic

maps, although Pink’s criterion is both sufficient and necessary, whereas ours is only

sufficient.

Theorem 3.1. Suppose that ϕ(x) ∈ k(x) is a rational function of degree d≥ 2 such that

ϕ′(x) �= 0. Fix N ∈ N and suppose there is a subset S ⊆ ϕc such that the following hold:

(1) for any a∈ S, b ∈ ϕc, and m,n≤ N, we have ϕm(a) �= ϕn(b) unless a= b and

m = n and

(2) the group G is generated by the ramification groups of the ϕ(a) for a∈ S, that

is, 〈⋃
a∈S

⋃
z extends ϕ(a)

in K1/E(t)

I (z/ϕ(a))

〉
= G.

Then we have GN
∼= [G]N . �

Remark 3.2. If S is the set of all finite critical points of ϕ, then condition (2) of

Theorem 3.1 follows automatically. To see this, let I be the subgroup of G generated

by the ramification groups of all the critical points. Then the fixed field K I
1 is unrami-

fied everywhere over E(t), so K I
1 = E(t) since E(t) has no unramified extensions of degree
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greater than 1, by Riemann–Hurwitz. Thus, I = G as desired. We use this fact in the

proof of Theorem 1.3.

Also note, condition (2) depends only on information about the first extension

K1/K, and this information is enough to conclude that GN
∼= [G]N in the case that condi-

tion (1) is met. �

To illustrate the importance of considering the extension K1/E(t) rather than

K1/k(t), we let k= Q and examine the example ϕ(x)= xd + c ∈ Q[x] where c is chosen so

that 0 is not preperiodic. Then E = Q(ξd) where ξd is a primitive dth root of unity and

I ( d
√

t − c|(t − c))∼= Cd
∼= G. The hypotheses of the theorem are satisfied for all N, thus,

GN
∼= [G]N for all N.

On the other hand, if d �= 2, then Gal(K2/k(t)) is not isomorphic to [Gal(K1/k(t))]2.

To see this, note that E ⊂ K1 so Gal(xd + c − d
√

t − c/K1)∼= Cd. Using a degree argu-

ment, this implies Gal(K2/k(t)) �∼= [Gal(K1/k(t))]2 (in fact, one can show the index of

Gal(KN/k(t)) in [Gal(K1/k(t))]N is unbounded as N grows). In Proposition 3.6, we show

that the first assertion holds more generally.

We use the following notation in the proof of Theorem 3.1. Let α1, . . . , αdn be the

distinct roots of ϕn(x)− t in ¯k(t). Let Mi be the splitting field of ϕ(x)− αi over E(αi) :=
E(t, αi). Let M̂i := Kn[

∏
j �=i Mj].

Lemma 3.3. The group Gal(Kn/k(t)) is isomorphic to a subgroup of [H ]n, where

H = Gal(K1/k(t)). In particular, the group Gn is isomorphic to a subgroup of [G]n. �

Proof. Note that k(αi)∼= k(t) so we have Gal(ϕ(x)− αi/k(αi))∼= Gal(K1/k(t)). The first

assertion follows immediately from Lemma 2.5 and induction on n. The same proof,

on replacing the constant field k by E , yields the second assertion. �

To make certain computations easier, we will work with discriminants in E [t]

rather than ramification divisors. In order to make this possible, we make a few reduc-

tions here. We note that, since for any extension E ′ of E , we have |Gal(KN · E ′/E ′(t))| ≤
|Gal(KN/E(t))|, it will suffice to show that Gal(KN · E ′/E ′(t))∼= [G]N for some extension E ′

of E . Hence, we may assume that E is algebraically closed. Since E is then infinite, and

a change of variables on ϕ does not affect Gal(KN/E(t)), we may therefore assume that

if a∈ S and m ≤ N, then ϕm(a) is not the point at infinity. (4)

Furthermore, we may assume that every prime in E [t] is of the form (z − t) for some

z∈ E , and that the prime at infinity in E(t) does not ramify in Kn for any n≤ N. Hence,
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in the next two lemmas, we assume that the conditions of Theorem 3.1 hold, that E is

algebraically closed, and that (4) holds.

Lemma 3.4. Let n< N. Every prime in E(t) that ramifies in Kn is of the form (ϕm(a)− t)

for a∈ ϕc and m ≤ n. �

Proof. We have seen that the prime at infinity does not ramify in Kn. For any i, we see,

by Lemma 2.1, that the primes of E(t) that ramify in Kn are those dividing

Δ(pn(x)− tqn(x))=
∏
b∈ϕc

(
(ϕ(b)− t)d

n−1 (
ϕ2(b)− t

)dn−2 · · · (ϕn(b)− t
))e(b/ϕ(b))

,

where the above equality follows from repeated application of the chain rule to iterates

of ϕ. �

Before continuing, we make a simple observation. Let αi be a root of ϕn(x)− t = 0

as above. Under the inclusion of fields E(t)⊆ E(αi), any prime (z − αi) extends the prime

(ϕn(z)− t) in E(αi)/E(t), since αi is a solution to ϕn(x)= t.

Lemma 3.5. Let n< N and a∈ S. The prime (ϕ(a)− αi) in E(αi) does not ramify in M̂i. �

Proof. We will show that (ϕ(a)− αi) does not ramify in Kn/E(αi) and that the primes

extending it in Kn/E(αi) do not ramify in Mj Kn if i �= j.

We have assumed that ϕn+1(a)− t �= ϕm(b)− t for any m ≤ n, any a∈ S, and b ∈ ϕc.

Thus, by Lemma 3.4, we see that (ϕn+1(a)− t) does not ramify in Kn. Since (ϕ(a)− αi)

extends (ϕn+1(a)− t) in E(αi)/E(t), it follows that (ϕ(a)− αi) does not ramify in Kn.

To show that (ϕ(a)− αi) does not ramify in Mj Kn for j �= i, first note that the

primes of Kn ramifying in Mj Kn are those dividing

Δ
(
ϕ(x)− α j

)
:=

∏
b∈ϕc

(
ϕ(b)− α j

)e(b/ϕ(b))
,

by Lemma 2.1. If a prime p of Kn extending (ϕ(a)− αi) in Kn/E(αi) ramifies in Mj,

then p divides Δ(ϕ(x)− α j), so p|(ϕ(b)− α j) for some b ∈ ϕc. Hence, p extends the prime

(ϕ(a)− αi) in Kn/E(αi) and extends the prime (ϕ(b)− α j) in Kn/E(α j). Now, the prime

p extends the prime (ϕn+1(a)− t) in E(αi)/E(t) and extends the prime (ϕn+1(b)− t)

in Kn/E(t), so we must have ϕn+1(a)= ϕn+1(b) (since p can extend exactly one prime

in Kn/E(t)). This means that a= b, by condition (1) of Theorem 3.1. Thus, p divides

both (ϕ(a)− αi) and (ϕ(a)− α j). This means that (αi − α j) ∈ p. Since Kn is a splitting
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field for ϕn(x)− t, this implies that p ramifies over p ∩ E(t)= (ϕn+1(a)− t), contradicting

Lemma 3.4, since ϕn+1(a)− t �= ϕm(b)− t for any m ≤ n, any a∈ S, and b ∈ ϕc by (3.4). �

We now prove Theorem 3.1.

Proof of Theorem 3.1. We will use induction to prove that Gn
∼= [G]n for all n≤ N. The

case of n= 1 is clear. Let n< N and suppose that Gm
∼= [G]m for all m ≤ n; we will

show that Gn+1
∼= [G]n+1. First note that E(αi)∼= E(t) so we have Gal(Mi/E(αi))∼= Gal

(K1/E(t))∼= G.

Elements of Gal(Kn+1/M̂i) and Gal(Mi/E(αi)) are determined by their actions on

the roots of ϕ(x)− αi. There is a natural injective homomorphism from Gal(Kn+1/M̂i)

to Gal(Mi/E(αi)) given by restriction of elements of Gal(Kn+1/M̂i) to Mi. Let Ψ :

Gal(Kn+1/M̂i)→ Gal(Mi/E(αi)) be this map.

Let p1 be any prime of Mi dividing
∏

a∈S(ϕ(a)− αi), let p := p1 ∩ E [αi], let p′ be

any extension of p1 to Kn+1, and let p2 := p′ ∩ M̂i. Then Ψ |I (p′|p2) : I (p′|p2)→ I (p1|p) is an

injective homomorphism of the inertia group of p′ over p2 to the inertia group of p1 over

p, so e(p1|p)≥ e(p′|p2). Since p2 is unramified over E(αi), e(p′|p2)= e(p′|p)≥ e(p1|p). Hence,

|I (p′|p2)| = |I (p1|p)| and Ψ |I (p′|p2) must be an isomorphism.

Consider I ⊆ Gal(Mi/E(αi)), the subgroup generated by{
I (q|q ∩ E (αi)) : q ∈ PMi , q

∣∣∣∣∣∏
a∈S

(ϕ(a)− αi)

}
,

and I ′ ⊆ Gal(Kn+1/M̂i), the subgroup generated by{
I
(
q′|q′ ∩ M̂i

)
: q′ ∈ PKn+1 , q

′
∣∣∣∣∣∏
a∈S

(ϕ(a)− αi)

}
.

Then Ψ |I ′ : I ′ → I is an isomorphism. So Gal(Kn+1/M̂i) contains an isomorphic copy of

I . We have I ∼= G by hypothesis so Gal(Kn+1/M̂i) contains an isomorphic copy of G.

We also know that Gal(Kn+1/M̂i) is isomorphic to a subgroup of G. It follows that Gal

(Kn+1/M̂i)∼= G.

Thus, we have

|Gn+1| =
n∏

i=0

| G |di = |[G]n+1|.

By Lemma 3.3, Gn+1 is isomorphic to a subgroup of [G]n+1. Hence, Gn+1
∼= [G]n+1, as

desired. �
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In Theorem 3.1, E was taken to be the algebraic closure of k in K1. In the follow-

ing proposition, we show that algebraic closure of this field is a necessary condition for

the iterated Galois groups to be the full iterated wreath products.

Proposition 3.6. Let H = Gal(K1/k(t)). Suppose that k is not algebraically closed in K1.

Then Gal(Kn/k(t)) is a proper subgroup of [H ]n for n> 1. �

Proof. If k is not algebraically closed in K1, then k(t) is a proper subfield of E(t) so G

is a proper subgroup of H . Thus, we have |G|< |H |. Now note that E ⊂ Kn for n≥ 1 so

E(αi)⊂ M̂i. Then Gal(Kn+1/M̂i) is isomorphic to a subgroup of Gal(Mi/E(αi))∼= G. There-

fore, |Gal(Kn+1/Kn)|< |H |dn
and

|Gal (Kn+1/k(t)) |< |[H ]n|,

as desired. �

4 Specializations of Galois Groups

Our main results will involve working over Galois extensions of function fields whose

fields of constants are number fields and reducing modulo primes of the number fields.

The notion of specializing Galois groups is most easily stated in a great deal of general-

ity, so we work over Noetherian integral domains here, rather than merely over rings of

integers in number fields.

Throughout out this section, we let F (D) denote the field of fractions of D for an

integral domain D.

Let R be a Noetherian integral domain of characteristic 0 and let A be a finitely

generated R-algebra that is an integrally closed domain. Let h(x)=∑d
i=1 aixi ∈ A[x] be

a nonconstant polynomial that is irreducible in F (A)[x]. Let B = A[θ1, . . . , θn] where θi

are the roots of h in some splitting field for h over F (A). We let X denote SpecA and

let Y denote SpecB. For any prime p of R, we let Xp (respectively, Yp) denote the fiber

X ×SpecR F (R/p) (respectively, Y ×SpecR F (R/p)). We let (0) denote the zero ideal in R. Note

that since R is an integral domain, (0) is Zariski-dense in SpecR. In particular, any con-

structible subset of SpecR that contains (0) must be Zariski-dense and open. Recall that

a subset Z is said to be constructible if it is a finite union of locally closed sets; a locally

closed set is the intersection of a closed set with an open set.

Suppose that F (R) is algebraically closed in both F (A) and F (B) (this is

a crucial assumption, see Remark 4.2). Then, since A and B have characteristic 0

we see that X(0) and Y(0) are both geometrically integral F (R)-schemes (see, e.g.,
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[6, Proposition 5.5.1]); in other words, A⊗F (R) k′ and B ⊗F (R) k′ are integral domains for

any algebraic extension k′ of F (R). Hence, by [7, Theorem 9.7.7], we see that the set of

p ∈ SpecR such that Xp and Yp are geometrically integral forms a Zariski-dense open

subset of SpecR. Thus, if we let W1 denote the set of p ∈ SpecR such that A/pA⊗R F (A/p)

and B/pB ⊗R F (B/p) are integral domains, then W1 is a Zariski-dense open subset of

SpecR.

Let Z2 be the set of primes of A that do not contain ad, the leading coefficient of h.

Then Z2 is a Zariski-dense open subset of SpecA. Let πAR : SpecA−→ SpecR be the map

induced by the inclusion of R into A and let W2 = πAR(Z2). Then by Chevalley’s theorem

on images of constructible sets (see, e.g., [6, Theorem 10.70]), W2 must be a constructible

subset of SpecR; since this subset contains the zero ideal, it must therefore be open and

dense. Likewise, for each i �= j, the set of primes Uij of p in SpecB that do not contain

θi − θ j form a Zariski-dense open subset of SpecB. Chevalley’s theorem thus implies that

there is a Zariski-dense open subset W3 ⊆ SpecR such that for all p ∈ W3 and any i �= j,

we have rp(θi) �= rp(θ j). Let W = W1 ∩ W2 ∩ W3.

Now, let p ∈ W. We let (A)p and (B)p denote A/pA⊗R F (A/p) and B/pB ⊗R F (B/p),

respectively. We let hp denote the image of h∈ (A)p[x] under the reduction map from

A to (A)p. We let rp denote the reduction map from B to (B)p. Since rp is a homomor-

phism of rings, it is clear that if θi is a root of h, then rp(θi) is root of hp; further-

more, hp splits into distinct linear factors in F (B/pB)[x], since h splits into distinct

factors in B[x] and rp(θi) �= rp(θ j) for all i �= j. Thus, F ((B)p) is a splitting field for hp over

F ((A)p) so F ((B)p) is a Galois extension of F ((A)p), and we have [F ((B)p) : F ((A)p)] = #Gal

(hp(x)/F ((A)p)).

Now, given any σ ∈ Gal(h(x)/F (A)), we see that σ : B −→ B since σ permutes the

θi, all of which are in B. Since σ acts identically on R, and thus on p, we see that

σ is an automorphism of R-algebras and that σ(pB)= pB. Thus, σ induces a homo-

morphism σp : (B)p −→ (B)p. If στ is the identity on B for τ ∈ Gal(F (B)/F (A)), then

clearly σpτp is the identity on (B)p, so σp is an automorphism of (B)p. It extends to

an automorphism of F ((B)p), because (B)p is an integral domain. Thus, we have a

homomorphism

ρp : Gal (h(x)/F (A))−→ Gal(hp(x)/F ((A)p))

with the property that

ρp (σ )
(
rp (θi)

)= rp (σ (θi))

for all σ ∈ Gal(h(x)/F (A)) and all roots θi of h in B.
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Proposition 4.1. Let R be a Noetherian integral domain of characteristic zero, and let

h, hp, rp, and ρp as defined above. For all p in a Zariski-dense open set W of primes of R,

we have the following:

(i) rp induces a bijection between the roots of h and the roots of hp and

(ii) ρp is an isomorphism of groups. �

Proof. Let p ∈ W. Since rp(θi) �= rp(θ j) for all i �= j, we see that (i) follows immediately.

Let σ be a nonidentity element of Gal(h(x)/F (A)). Then, for some θi we have

σ(θi)= θ j for some θ j �= θi. Since rp(θi) �= rp(θ j) for any θi �= θ j, it follows that ρp(σ )(rp(θi)) �=
rp(θi), so ρp(σ ) is not the identity. Thus, ρp must be injective.

As before, we let πAR : SpecA−→ SpecR be the map induced by the inclusion of R

into A. Let SpecC be an open affine subset of π−1
AR(W) such that πAR(SpecC ) contains p.

Then, since hp is separable (because the rp(θi) are distinct) and ad is a unit in C , we have

#Gal(hp(x)/F ((A)p))≤ #Gal (h(x)/F (A)) (5)

by [17, Lemma 2.4]. It follows that ρp is surjective and is therefore an isomorphism of

groups. �

Remark 4.2. When F (R) is not algebraically closed in F (B), many of the arguments in

this section do not work. For example, if R= Z, A= Z[t], and B = Z[ 3
√

t, ξ3], for ξ3 a cube

root of unity, then the Galois group of F (B) over F (A) has order 6, but when one mods

out by a prime p≡ 1 (mod 3), one does not obtain an integral domain. This explains

why Gal((x3 − t)/Q) can have order 6, even though there are infinitely many p such that

Gal((x3 − t)/Fp) has order 3. Note that we still have #Gal((x3 − t)/Fp)≤ #Gal((x3 − t)/Q)

for all p �= 3, as in [17, Lemma 2.4]. �

5 The Chebotarev Density Theorem for Function Fields

We begin by showing that if p is a prime of good reduction for ϕ, then the number of

periodic points for ϕp is bounded above by #ϕn
p(P

1(Fq)) for any n, where Fq is the residue

field of p. This follows from a very general principle, which we now prove.

Definition 5.1. Let T : U → U be any map of a set U to itself. For u∈ U , define T0(u)= u

and Tn = T(Tn−1(u)). We say that u is periodic if Tk(u)= u for some k∈ N and we say u

is preperiodic if Tk(u) is periodic for some k∈ Z≥0. We denote the set of periodic points

Per(T) if the set U is clear from the context. �
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Lemma 5.2. If U is finite, then every point of U is preperiodic and Per(T)=⋂∞
n=0 Tn(U).

In particular, #Per(T)≤ #Tn(U) for any positive integer n. �

Proof. Suppose that U is finite and let u∈ U . Then by the pigeonhole principle, there

exist m,n∈ N such that Tm(u)= Tn(u), so u is preperiodic.

Suppose that u∈ U is periodic. Write Ti(u)= u for some i > 0. Then u∈ Tik(U) for

all k> 0. Since Tin(U)= Tn(Tn(i−1)), we have that Tin(U)⊆ Tn(U), so u∈ Tn(U) for every n.

Suppose that u∈⋂∞
n=0 Tn(U). Then we may form a sequence

{
T (a1) , T

2 (a2) , T
3 (a3) , . . .

}
such that Ti(ai)= u. Since U is finite, the pigeonhole principle gives that there exist i, j

with j > i such that ai = aj. Then u is periodic, as

u= T j (aj
)= T j−i (Ti (aj

))= T j−i (Ti (ai)
)= T j−i(u). �

In order to apply the Chebotarev density theorem for function fields [16], we

establish further notation. Let L be a function field over a finite field Fq, and let M be a

finite extension of L. Let α be a degree-1 prime in L, that is a prime whose residue field

is Fq. Suppose that α does not ramify in M. Then for each prime γ in M lying over α,

there is a unique Frobenius element Frob(γ /α) such that Frob(γ /α) fixes γ and acts as

x �→ xq on the residue field 	γ of γ . We let Frob(α) denote the conjugacy class of Frob(γ /α)

in Gal(M/L) (note that elements of this conjugacy class correspond to Frob(γ ′/α) as γ ′

ranges over all primes of M lying over α).

Proposition 5.3. Let k be a number field, let K = k(t), and let ϕ : P1
k → P1

k be a rational

function. Let n∈ Z+ and Kn be a splitting field of ϕn(x)− t over K for some n, and let

Gn be Gal(Kn/K). Suppose that k is algebraically closed in Kn. Let δ > 0. Then there is a

constant Mδ such that for all p with N(p) > Mδ, we have

#Per
(
ϕp

)
N(p)+ 1

≤ FPP (Gn)+ δ. (6)

�

Proof. Let p ∈ Specok be a prime of good reduction for ϕ such that we have

Gal((Kn)p/(K)p)∼= Gn and let Fq denote its residue field ok/p. We let ϕp denote the reduc-

tion of ϕ modulo p and let (Kn)p denote the splitting field of ϕn
p(x)− t. Let z be a root of

ϕn
p(x)− t in (Kn)p and let S denote the conjugates of z in (Kn)p. Then the map ϕp : PFq → PFq

is induced by the inclusion of (K)p into (K)p(z). Let An be the integral closure of Fq[t] in
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(Kn)p. Then AGn
n = Fq[t]; that is, Fq[t] is the set of elements of An that are fixed by every ele-

ment of Gn. Now, let (t − ξ) be a degree-1 prime in Fq[t] that does not ramify in (Kn)p, and

let D(m/(t − ξ)) be the decomposition group of a prime m in (Kn)p that lies over (t − ξ).

Then, by [9, Lemma 3.2], the number of degree-1 primes β in (K)p(z) lying over (t − ξ) is

equal to the number of fixed points of D(m/(t − ξ)) acting on S. Likewise, working with

the integral closure A′
n of Fq[ 1

t ] in (Kn)p, we see that if τ is the prime at infinity in Fq(t)

(i.e., is the prime ( 1
t ) in Fq[ 1

t ]) and τ does not ramify in (Kn)p, then the number of degree-1

primes in (K)p(z) lying over τ is equal to the number of fixed points of D(m/τ) acting on

S, where m is a prime of A′
n lying over τ . Since decomposition groups over unramified

primes are generated by Frobenius elements, we see that for any α ∈ P1(Fq) that does not

ramify in (Kn)p, we have

∃β ∈ P1 (Fq
)

such that ϕn
p(β)= α⇔ Frob(α) has a fixed point in S. (7)

Since any dense open subset of Specok contains all but finitely many primes in

Specok, it thus follows from Proposition 4.1 that for all but finitely many p, the action of

Gal((Kn)p/(K)p) on S is isomorphic to the action of Gn on the roots of ϕn(x)− t.

Let ψ denote the number of degree-1 primes α of P1
Fq

such that α does not ramify

in (Kn)p. For any conjugacy class C of Gn, we let ψC denote the number of degree-1

primes α of P1
Fq

such that α does not ramify in (Kn)p and such that Frob(α)= C . Then [16,

Theorem 1] states that ∣∣∣∣ψC − ψ
#C

#Gn

∣∣∣∣≤ 2g(Kn)p

#C

#Gn

√
q + #R, (8)

where g(Kn)p is the genus of (Kn)p and R is the set of primes of P1
Fq

that ramify in (Kn)p. Let

Fix(Gn) be the set of elements of Gn that fix an element of S. Then #Fix(Gn)

#Gn
= FPP(Gn), and

for any α outside of R, there is a β in P1(Fq) such that ϕn
p(β)= α if and only if Frob(α)⊆

Fix(Gn) by (7). There are at most #R ramified primes α of Fq such that α ∈ ϕn
p(P

1(Fq)).

Thus, summing the estimates in (8) over all conjugacy classes in Fix(Gn) and diving by

ψ = q + 1, we then obtain

ϕn
p

(
P1
(
Fq
))

q + 1
≤ FPP (Gn)+ 2g(Kn)p

√
q

q + 1
+ (c + 1)#R

q + 1
, (9)

where c is the number of conjugacy classes in Fix(Gn).

The set of primes over which ϕn
p ramifies has size at most n(2 degϕ − 2) since ϕp

ramifies over at most (2 degϕ − 2) points and ϕn
p can only ramify over these points and

their first n− 1 iterates under ϕp. (Note that degϕp = degϕ since ϕ has good reduction
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at p.) The size of Gn can be bounded in terms of n and d only, since it is a subgroup of

the symmetric group on dn elements.

Thus, for any p of characteristic greater than degϕ (this guarantees that there is

no wild ramification at for ϕp), we see that g(Kn)p can be bounded in terms of degϕp and

n by Riemann–Hurwitz; for example,

g(Kn)p ≤ |Gn|n
(
2 degϕp − 2

)
.

Hence, by (9) there is an Mδ such that for all p with N(p)≥ Mδ, we have

ϕn
p

(
P1
(
Fq
))

q + 1
≤ FPP (Gn)+ δ.

Applying Lemma 5.2 then finishes our proof. �

We immediately deduce the following as a consequence Proposition 5.3.

Corollary 5.4. With notation as in Proposition 5.3, suppose that k is algebraically closed

in Kn for all n. Then, if limn→∞ FPP(Gn)= 0, we have

lim
N(p)→∞

#Per
(
ϕp

)
N(p)+ 1

= 0. (10)

�

6 Proofs of Main Theorems

We will use the following lemma from [17].

Lemma 6.1 ([17, Lemma 4.3]). Let G be any transitive group acting faithfully on a finite

set S, where #S> 1. Then [G]n acts naturally on Sn and limn→∞ FPP([G]n)= 0. �

We are now ready to prove our main theorems on proportions of periodic points.

Proof of Theorem 1.2. Fix ε > 0. By Lemma 6.1, there is an n such that FPP([Sd]n)≤ ε/2.

Let R= k[a0, . . . ,ad,b0, . . . ,bd]. Then, the general rational function

ϕ(x)= adxd + · · · + a0

bdxd + · · · + b0

gives an equation hn(x)= ϕn(x)− t = 0. Let D be the ring k[c0, . . . , cd−1] and let

ψ : R[t] −→ D be the homomorphism given by ψ(ad)= 1, ψ(ai)= ci for 0 ≤ i <d, ψ(b0)= 1,

ψ(bj)= 0 for 1 ≤ j ≤ d, and ψ(t)= 0. Then ψ extends to a map ψ1 : R[t][x] −→ D[x] such
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that ψ1(h(x))= xd + cd−1xd−1 + · · · + c0. By [17, Theorem 1], we have Gal(ψ1(hn)/F (D))∼=
[Sd]n. Since lemma [17, Lemma 2.4] gives

#Gal (ψ1 (hn) /F (D))≤ #Gal (hn(x)/F (R[t])) ,

and Gal(hn(x)/F (R[t])) is isomorphic to a subgroup of [Sd]n, this means that

Gal(hn(x)/F (R[t]))∼= [Sd]n. Proposition 3.6 then tells us that F (R) is integrally closed in

the splitting field of hn(x), since otherwise Gal(hn(x)/F (R[t])) would be a proper sub-

group of [Sd]n for all n≥ 2. Thus, by Proposition 4.1, if Vd,ε is the set of prime ideals

m ∈ SpecR such that Gal((hn)p/(K)p)∼= [Sd]n, then Vd,ε is Zariski-open in SpecR.

Let Ud,ε = Vd,ε ∩ Ratd where Ratd is as in the paragraph above the statement of

Theorem 1.2. Let ϕ	a,	b ∈ Ud,ε(k). Then by Proposition 5.3, applied to δ = ε/2, we have

#Per
(
ϕ	a,	b

)
N(p)+ 1

≤ ε/2 + ε/2 = ε,

for all sufficiently large N(p), and our proof is complete. �

Lemma 6.2. Let k be a number field, let ϕ ∈ k(x), let p be a prime of good reduction for

ϕ, and let k′ be a finite extension of k. Let q be a prime of k′ such that q ∩ ok = p and

[(ok′/q) : (ok/p)] = 1. Then ϕ induces a map ϕ̃ over k′ such that ϕ̃ has good reduction at q

and we have #Per(ϕ̃q)= #Per(ϕp). �

Proof. We let ϕ̃ be the image of ϕ in k′(x) under the inclusion k(x)⊆ k′(x). Then ϕ̃ has

good reduction at q.

Since [(ok′/q) : (ok/p)] = 1, for any β ∈ ok′ , there is an α ∈ ok such that β ≡ α (mod q).

Thus, there is a natural bijection σ : P1(ok′/q)−→ P1(ok/p) such that ϕp(σ (z))= σ(ϕ̃q(z))

for all z∈ P1(ok′/q). Thus, for each z∈ P1(ok′/q), we see that z is periodic under ϕq exactly

when σ(z) is periodic under ϕp. Hence, we have #Per(ϕ̃q)= #Per(ϕp). �

Lemma 6.3. Let k be a number field, let ϕ ∈ k[x], let p be a prime of good reduction for ϕ,

let k′ be a finite extension of k, and let ϕ̃ denote the extension of ϕ to P1
k′ . Then

lim inf
N(p)→∞

primes p of k

#Per
(
ϕp

)
N(p)+ 1

≤ lim sup
N(q)→∞

primes q of k′

#Per
(
ϕ̃q

)
N (q)+ 1

.
�

Proof. There is a positive proportion of primes p in k such that pok′ factors as a product

of distinct primes q such that [(ok′/q) : (ok/p)] = 1, by the Chebotarev density theorem

for number fields (see [22, 23]). Let P be the set of all such primes at which ϕ has good
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reduction. Let P ′ be set of primes q of k′ such that q|p for some p ∈P. Then, by Lemma 6.2,

we have

lim inf
N(p)→∞

primes p of k

#Per
(
ϕp

)
N(p)+ 1

≤ lim inf
N(p)→∞

p∈P

#Per
(
ϕp

)
N(p)+ 1

≤ lim sup
N(q)→∞

q∈P ′

#Per
(
ϕ̃q

)
N (q)+ 1

≤ lim sup
N(q)→∞

primes q of k′

#Per
(
ϕ̃q

)
N(q)+ 1

,

as desired. �

We now prove Theorem 1.3. Recall that Kn denotes the splitting field of ϕn(x)− t

over k(t).

Proof of Theorem 1.3. Let E denote the algebraic closure of k in K1 and let G be

the Galois group Gal((ϕ(x)− t)/E(t)). Let I be the subgroup of G generated by the

ramification groups of the critical points. Then I = G by Remark 3.2. Thus, we have

Gal((ϕn(x)− t)/E(t))∼= [G]n for all n by Theorem 3.1. Thus, by Corollary 5.4,

lim
N(q)→∞

q a prime of E

#Per
(
ϕ̃q

)
N(q)+ 1

= 0,

and Lemma 6.3 then implies (a). If k is algebraically closed in K1, then k= E and (b)

follows from Corollary 5.4. �

Proposition 6.4. Let k be a number field, let d> 1, and let f(x)= xd + c ∈ k[x] have the

property that 0 is not preperiodic. Then

(a)

lim inf
p→∞

#Per( fp)

N(p)+ 1
= 0;

(b) if k contains a primitive dth root of unity, we have

lim
p→∞

#Per
(

fp
)

N(p)+ 1
= 0. �

Proof. Let k′ = k(ξd) where ξd is dth roof unity, and let f̃ denote the extension of f

to P1
k′ . Then the splitting field of f̃(x)− t over k(t) is simply k′(t)( d

√
t − c), which has
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degree d over k′(t) and ramifies completely over t − c; thus, the Galois group is gener-

ated by the ramification group over t − c. Since the critical point 0 is not preperiodic,

we see then that the conditions of Theorem 3.1 are met for all N. Thus, for any n,

we have Gal(( f̃n(x)− t)/k′(t))∼= [Cd]n, where Cd is the cyclic group of order d. Thus, by

Corollary 5.4 and Lemma 6.1, we have

lim
N(q)→∞

q a prime of k′

#Per
(

f̃q
)

N(q)+ 1
= 0.

Since k′ = k if k contains a primitive dth root of unity, (b) follows immediately from

Corollary 5.4; likewise, (a) follows from Corollary 5.4 and Lemma 6.3. �

Theorem 6.5. Let k be a number field, let d> 1, and let f(x)= xd + c ∈ k[x]. Then

lim inf
p→∞

#Per
(

fp
)

N(p)+ 1
= 0

unless f is the Chebyshev polynomial x2 − 2. �

Proof. If 0 is not preperiodic under f, then the desired result follows immediately from

Proposition 6.4.

If 0 is preperiodic for f , then f is post-critically finite; that is, every critical point

of f is preperiodic. By [13, Theorem 1.1], we must then have limn→∞ FPP(Gal(( fn(x)−
t)/C(t)))= 0 unless either (a) f is conjugate to ±Td, where Td is a Chebyshev polynomial

of degree d or (b) there is a fixed point α ∈ C of f such that f−1(α) \ {α} is a nonempty set

of critical points of f . It is clear that (b) cannot happen for maps of the form xd + c, since

the inverse image of any point contains either a single critical point or more than one

point that is not critical. Furthermore, when d> 2, no ±Td can be conjugate to xd + c,

since the derivative of ±Td cannot be a perfect (d− 1)st power (since, e.g., ±T ′
d has a

nonzero term of degree d− 3 but no term of degree d− 2). In the case where d= 2, the

only conjugate of ±Td that has the form x2 + c is x2 − 2 (see [13, Corollary 1.3]).

Now, assume that f(x) �= x2 − 2. Then, from above, we see that if Ln is the split-

ting field of fn(x)− t over C(t) and Gn = Gal(Ln/C(t)), then FPP(Gn) goes to zero as ngoes

to infinity. Now, let Kn be the splitting field of fn(x)− t over k(t) and let kn be the alge-

braic closure of k in Kn. Since Kn and C(t) are disjoint over kn(t) we see that every action

of Gn on the roots of fn(x)− t restricts to a unique action of Gal(Kn/kn(t)) on the roots

of fn(x)− t. For each kn, there is a positive proportion of primes p in k such that pokn

factors as a product of distinct primes q such that okn/q = ok/p by the Chebotarev density
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theorem for number fields (see [22, 23]). Let Un be the set of all such primes. Then there is

some nsuch that FPP(Gn) < ε/2. Then, using Proposition 5.3 with δ = ε/2, we see that for

all sufficiently large q, the proportion of periodic points for fq is at most ε. Thus, there

is an element of q ∈ Un such that the proportion of periodic points for fq is at most ε.

Letting p = q ∩ ok, the proportion of periodic points for fp is at at most ε, by Lemma 6.2.

This proves the theorem. �

We can now prove Theorem 1.5 quite easily.

Proof of Theorem 1.5. We choose a linear polynomial σ = ax + b ∈ k[x] such that

(σ−1 fσ)(x)= x2 + c for some c ∈ k. Since σ is an automorphism of ok/p for all but at

most finitely many primes p of ok, it follows that for all but at most finitely many

primes p, we have #Per( fp)= #Per((σ−1 fσ)p). The result now follows immediately from

Theorem 6.5. �

Remark 6.6. We note that the techniques Jones [13] uses to control Gal(( fn(x)− t)/C(t)),

for f a post-critically finite polynomial, are completely different than the wreath prod-

uct techniques used here. Whereas the wreath product techniques here are mostly alge-

braic (relying on disjointness of ramification in field extensions), Jones relies on the

complex-analytic theory of iterated monodromy groups. �

7 Examples

We end with a discussion of how proportions of periodic points behave for powering,

Chebyshev, and Lattès maps as we vary over primes in Z. Note that Manes and Thomp-

son [15] have previously analyzed periodic points for Chebyshev maps in Fpn as n goes

to infinity. In these examples, we provide a mostly elementary analysis, with no esti-

mates of proportions of fixed-point-free elements for iterated Galois groups; for a more

Galois-theoretic discussion of related issues, see [13].

Example 7.1. Let f(x)= xd. Let k be a number field. By the Chebotarev density theorem

for number fields, for any m there are infinitely many primes q of ok such that dm divides

q − 1 where Fq is the residue field ok/q. For each such prime, fm
q is a dm-to-one map

on (Fq)
∗ so the proportion of periodic points is at most 1/dm + 2/(q + 1) (the two comes

from the fact that 0 and ∞ are periodic). Thus, we see that

lim inf
N(q)→∞

#Per
(

fq
)

N(q)+ 1
= 0. �
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Example 7.2. Let f be a monic Chebyshev polynomial satisfying f(x + 1
x)= xd + 1

xd . Here

we work only over Q. We can give an elementary description of the asymptotic behavior

of the proportion of periodic points for fp; it depends very much on whether or not d is

a prime power.

Define π(x)= x + 1
x and g(x)= xd. Then we have

P1 g−−−−→ P1

π

⏐⏐� π

⏐⏐�
P1 f−−−−→ P1

Take any α ∈ P1(Fp). Let β ∈ P1(Fp2) such that π(β)= α. We will show that β is

g-periodic if and only if α is f-periodic. If β is g-periodic, then gm(β)= β so fm(α)= α,

so α must be f-periodic. Conversely, suppose that α is f-periodic. If β equals 0 or ∞,

then α is ∞ so both α and β are periodic. Suppose β �= 0,∞. If fm(α)= α for some m, then

π(gm(β))= α for some m, so gm(β)= β or gm(β)= 1/β. If gm(β)= β, then β is obviously

g-periodic; if gm(β)= 1/β, then βdm = 1/β so (1/β)d
m = β, thus g2m(β)= β and hence β is

still periodic.

Let U be the set of z∈ F∗
p2 such that π(z) ∈ Fp. We see that if z∈ U and z /∈ Fp, then

z and 1/z are the roots of the quadratic polynomial T2 − (z + 1/z)T + 1, so z and 1/z are

conjugate over Fp. Hence, we have zp = 1/z so zp+1 = 1. Thus, we see that U = (Fp)
∗ ∪ Up+1

where Up+1 is the set of points in F∗
p2 whose order divides p+ 1. The elements of U that

are g-periodic are simply the ones whose order is coprime to d.

When d is a power of an odd prime, either p+ 1 or p− 1 is prime to d, so we

obtain at least p− 1 g-periodic points. Since π is two-to-one at all but two points of

U , we see immediately that lim infp→∞ #Per( fp)/p≥ 1
2 . Now, there are p such that p≡ 1

(mod dr), for any positive integer r by the Dirichlet theorem for primes in arithmetic pro-

gressions (which may be regarded as a special case of the Chebotarev density theorem

for number fields), so the proportion of g-periodic points in F∗
p can be made as small as

desired. Thus, we have

lim inf
p→∞

#Per
(

fp
)

p
= 1

2
.

Suppose that d is a power of 2. Then at least one of p− 1 and p+ 1 is not divis-

ible by 4. Arguing as in the case of odd prime powers (only with 2 dividing both p− 1

and p+ 1 for p> 2), we see that lim infp→∞ #Per( fp)/p≥ 1
4 . For any r, there are infinitely

many p such that p≡ 1 (mod 2r), again by Dirichlet’s theorem on primes in arithmetic

progressions. For such primes, half of the elements of Up+1 are g-periodic and at most
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1/2r points in F∗
p are g-periodic, so we thus obtain

lim inf
p→∞

#Per
(

fp
)

p
= 1

4
.

When dhas at least two distinct prime factors 	1 and 	2, things are very different.

Using the Chinese Remainder Theorem together with Dirichlet’s theorem for primes in

arithmetic progressions we may, for any r, find a prime p such that p≡ 1 (mod 	r
1) and

p≡ −1 (mod 	r
2). The proportion of periodic points in F∗

p is then at most 1/	r
1, and the

proportion of periodic points in Up+1 is at most 1/	r
2. Hence, we see in this case that

lim inf
p→∞

#Per
(

fp
)

p
= 0. �

Example 7.3. Let 	 be a prime and let ϕ(x) be a Lattès map induced by the multiplication-

by-	 map on an elliptic curve E , say defined over Q. We will show that in many cases, we

must have

lim inf
p→∞

#Per
(
ϕp
)

p
= 0.

The argument here is quite similar to that of Example 7.2, though the details

are more complicated. Given the multiplication-by-d map (which we denote as [d]) on an

elliptic curve E , we have a Lattès map ϕ that makes the following diagram commute:

E
[d]−−−−→ E

π

⏐⏐� π

⏐⏐�
P1 ϕ−−−−→ P1

The projection π here comes from the inclusion of the fixed field of the elliptic involution

[−1] into the function field of E . When E is in Weierstrass form y2 = g(x), we have simply

π(x, y)= x.

We now assume that d= 	 is a prime; letting Gal(Q̄/Q) act on the Tate module

T	(E) we obtain a homomorphism ρ	 : Gal(Q̄/Q)→ GL2(Z	). We further assume that 	 is

chosen so that ρ	 surjects onto GL2(Z	); for E fixed (and without complex multiplication)

this holds for all but finitely many primes 	 by Serre’s celebrated open image theorem

(see [19]).

Given a prime p, let Fp = ρ	(Frobp) denote the image of the Frobenius conjugacy

class Frobp in GL2(Z	). Given k∈ Z+, the Chebotarev density theorem together with the
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surjectivity of ρ	 implies that we have

σp ≡
(

1 0

0 −1

)
mod 	k

for some σp ∈ ρ	(Frobp) for a positive proportion of primes p. For such p, the group

E(Fp), viewed as an abelian group, contains a subgroup H1 � Z/	kZ on which the induced

Frobenius action is trivial. Furthermore, since σ 2
p is congruent to the identity matrix

modulo 	k, there exists a subgroup H2 � Z/	kZ contained in E(Fp2) such that the induced

Frobenius action on H2 is given by multiplication by −1. In order to analyze the action

of ϕp on P1(Fp), let

S1 = {
x ∈ Fp : x3 + ax + b is a quadratic residue mod p

}
and let S2 = Fp \ S1 denote the complement.

We begin with the ϕp-periodic points in S1. With G1 denoting the group of

Fp-points on E , we note that π−1(S1) ∪ {∞} = G1. By [20, Proposition 6.52], Pern(ϕ)=
π(E [	n − 1]) ∪ π(E [	n + 1]) hence it is enough to show that G1 has small intersection with

the union of E [	n ± 1] for all n. Let H ′
1 denote the maximal cyclic group of order 	k1 such

that H ′
1 ⊂ G1. Note that H ′

1 contains H1, so k1 ≥ k, and we also note that there is a natural

surjection G1 � H ′
1. Moreover, since 	 is coprime to 	n ± 1 for all n, the intersection

G1 ∩
(⋃

n≥1

(
π
(
E [	n − 1]

) ∪ π (E [	n + 1]
)))

is contained in the kernel of G1 � H ′
1. Consequently, the proportion of ϕp-periodic point

in S1 is at most (1 + o(1))/	k, as p→ ∞.

We next consider the proportion of ϕp-periodic points in S2. Since π−1(S2) is con-

tained in the subgroup

G2 := {
P ∈ E

(
Fp2

)
: P + Frobp (P )= 0

}
(if x ∈ S2 and y2 = x3 + ax + b, then Frobp(y)= −y) and π−1(S2) ∪ E [2](Fp2)= G2 (i.e., they

have essentially the same cardinality) we may argue as before by bounding the intersec-

tion G2 ∩ (⋃n≥1(π(E [	n − 1]) ∪ π(E [	n + 1]))). With H ′
2 denoting the maximal cyclic group

of order 	k2 such that H ′
2 ⊂ G2; we again have k2 ≥ k and a projection G2 � H ′

2.

Arguing as before, we find that the proportion of ϕp-periodic points in S2 is also

at most (1 + o(1))/	k, as p→ ∞.

Thus, as both proportions of ϕp-periodic points in S1 and S2 is at most (1 +
o(1))/ lk, as p→ ∞, the same bound holds for the proportion of ϕp-periodic points x ∈ Fp
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(recall that Fp is the disjoint union of S1 and S2). Since k might be taken arbitrarily large,

we find that

lim inf
p→∞

#Per
(
ϕp
)

p+ 1
= 0.

We end by remarking that ρ	 being surjective is a much stronger assumption than

needed—we only require that the image contains a sequence of elements gi approaching

(in the 	-adic norm) some h∈ GL2(Z	) which is Z	-conjugate to J := (
1 0
0 −1

)
. For instance,

if 	 is odd and #(E [	] ∩ E(Q))= 	, the image of ρ	 is much smaller than GL2(Z	), but it

still contains an element M ∈ GL2(Z	) which, modulo l is conjugate to J. (Since there is

	-torsion defined over Q, the reduction modulo 	 fixes an F	-line, and the composition

of ρ	 with the determinant surjects onto Z×
	 .) Now, M being conjugate (modulo 	) to a

diagonal matrix whose eigenvalues are distinct modulo 	 implies a Z	-conjugacy M ∼
M′ = (

λ1 0
0 λ2

)
where λ1 ≡ 1 mod 	 and λ2 ≡ −1 mod 	. Since M is in the image, so is M	k

,

and we clearly have (M′)l
k → J as k→ ∞ (in the 	-adic metric). �
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des morphismes de schémas. III.” Institut de Hautes Études Scientifiques. Publications
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