Let X be a smooth curve defined over \mathbb{Q}, let $a, b \in \mathbb{P}^1(\mathbb{Q})$ and let $f_\lambda(x) \in \mathbb{Q}(x)$ be an algebraic family of rational maps indexed by all $\lambda \in X(\mathbb{C})$. We study whether there exist infinitely many $\lambda \in X(\mathbb{C})$ such that both a and b are preperiodic for f_λ. In particular we show that if $P, Q \in \mathbb{Q}[x]$ such that $\deg(P) \geq 2 + \deg(Q)$, and if $a, b \in \overline{\mathbb{Q}}$ such that a is periodic for $\frac{P(x)}{Q(x)}$, but b is not preperiodic for $\frac{P(x)}{Q(x)}$, then there exist at most finitely many $\lambda \in \mathbb{C}$ such that both a and b are preperiodic for $\frac{P(x)}{Q(x)} + \lambda$. We also prove a similar result for certain two-dimensional families of endomorphisms of \mathbb{P}^2. As a by-product of our method we extend a recent result of Ingram [18] for the variation of the canonical height in a family of polynomials to a similar result for families of rational maps.

1. Introduction

In [2], Baker and DeMarco study the following question: given complex numbers a and b, and an integer $d \geq 2$, when do there exist infinitely many $\lambda \in \mathbb{C}$ such that both a and b are preperiodic for the action of $f_\lambda(x) := x^d + \lambda$ on \mathbb{C}? They show that this happens if and only if $a^d = b^d$. The problem, originally suggested by Zannier, is a dynamical analog of a question on families of elliptic curves studied by Masser and Zannier in [20, 21, 22]. This problem was motivated by the Pink-Zilber conjectures in arithmetic geometry regarding unlikely intersections between a subvariety V of a semiabelian variety A and families of algebraic subgroups of A of codimension greater than the dimension of V (see [6, 16, 24]). A thorough treatment of the problem of unlikely intersections on families of semiabelian varieties can be found in [30].

The authors extended the results of [2] to more general families of polynomials in [15]. The polynomials considered in [2, 15] are algebraic families parameterized by points in an affine subset of the projective line. In this paper, we extend our investigation to families of rational maps and the parameter spaces are general algebraic curves defined over a number field. Moreover, general families of two-dimensional endomorphisms of \mathbb{P}^2 are also studied. As in [2, 15], a key ingredient in the study of families of mappings is the application of equidistribution theorems [4, 10, 13, 28] to the situation of arithmetic dynamics. Note that the equidistribution results of [4, 10, 13] apply only in dimension 1. As we also treat the case of higher dimensional parameter spaces in this paper, we apply the equidistribution results, obtained by Yuan [28] and the recent result of Yuan-Zhang [29] to these more
general families of maps. We prove the following higher genus generalization of Theorem 1.1 of [2].

Theorem 1.1. Let C be a projective nonsingular curve defined over $\bar{\mathbb{Q}}$, let $\eta \in C(\bar{\mathbb{Q}})$, and let A be the ring of functions on C regular on $C \setminus \{\eta\}$. Let $\Phi, \Psi \in A$ be nonconstant functions. Let $P_i, Q_i \in \bar{\mathbb{Q}}[x]$ for $i = 1, 2$ be polynomials such that $\deg(P_i) \geq \deg(Q_i) + 2$ for each i. Let

$$f_\lambda(x) := \frac{P_1(x)}{Q_1(x)} + \Phi(\lambda) \quad \text{and} \quad g_\lambda(x) := \frac{P_2(x)}{Q_2(x)} + \Psi(\lambda)$$

be one-parameter families of rational maps indexed by all $\lambda \in C(\mathbb{C})$, and let $a, b \in \bar{\mathbb{Q}}$ such that both $Q_1(a)$ and $Q_2(b)$ are nonzero. If there exist infinitely many $\lambda \in C(\mathbb{C})$ such that a is preperiodic under the action of f_λ and b is preperiodic under the action of g_λ, then for each $\lambda \in C(\mathbb{C})$, a is preperiodic under the action of f_λ if and only if b is preperiodic under the action of g_λ.

The following is an immediate consequence of Theorem 1.1.

Corollary 1.2. Let $a, b \in \bar{\mathbb{Q}}$, let $P_i, Q_i \in \bar{\mathbb{Q}}[x]$ for $i = 1, 2$ be polynomials such that $\deg(P_i) \geq \deg(Q_i) + 2$ for each i. Assume that a is preperiodic for $\frac{P_1(x)}{Q_1(x)}$ but $Q_1(a) \neq 0$, and that b is not preperiodic for $\frac{P_2(x)}{Q_2(x)}$. Then there exist at most finitely many $\lambda \in \mathbb{C}$ such that both a is preperiodic for $\frac{P_1(x)}{Q_1(x)} + \lambda$ and also b is preperiodic for $\frac{P_2(x)}{Q_2(x)} + \lambda$.

Theorem 1.1 will follow from our main result (see Theorem 2.2). Our main result (see Theorem 2.2) also has applications to the study of post-critically finite maps. A map $f : \mathbb{P}^1 \to \mathbb{P}^1$ is called post-critically finite (PCF) if each critical point of f is preperiodic under the action of f. The post-critically finite maps are important in algebraic dynamics; recently Baker and DeMarco [3] have made a far-reaching conjecture about them. Baker and DeMarco are interested in locating the post-critically finite polynomials within the moduli space \mathcal{P}_d of all polynomial maps of degree d. Dujardin and Favre [11] showed that the PCF maps are equidistributed with respect to the bifurcation measure in \mathcal{P}_d; in particular, they form a Zariski dense subset of \mathcal{P}_d. Baker and DeMarco aim at characterizing curves (or subvarieties) in \mathcal{P}_d containing a Zariski dense subset of PCF maps; the expectation is that such subvarieties are very special. Roughly speaking, [3] conjectures that a subvariety $V \subset \mathcal{P}_d$ contains a Zariski dense subset of PCF maps if and only if V is cut out by critical orbit relations. The notion of “critical orbit relation” is a bit delicate, as one needs to take into account the presence of symmetries in any given family of polynomials. We can prove the following result which offers support to the main conjecture of [3].

Theorem 1.3. Let $f, g \in \bar{\mathbb{Q}}[z]$ be polynomials of degree larger than 1, let $C \subset \mathbb{A}^2$ be a curve with the property that its projective closure in \mathbb{P}^2 is a nonsingular curve with exactly one point at infinity. If there exist infinitely many points $(x, y) \in C(\bar{\mathbb{Q}})$ such that $f(z) + x$ and $g(z) + y$ are both PCF maps, then for each point $(x, y) \in C(\mathbb{C})$, we have that $f(z) + x$ is PCF if and only if $g(z) + y$ is PCF.

It is not clear, in general, how many of the results above should carry over into higher-dimensional situations. As another application of the techniques developed
in this paper, we are able to prove a first result regarding unlikely intersections for algebraic dynamics in higher dimensions.

Theorem 1.4. Let \(P(X, Z) \in \mathbb{Q}[X, Z] \) and \(Q(Y, Z) \in \mathbb{Q}[Y, Z] \) be homogeneous polynomials of degree \(d \geq 3 \) and assume that \(P(X, 0) \) and \(Q(Y, 0) \) are nonzero. Let \(f_{\lambda, \mu} : \mathbb{P}^2 \to \mathbb{P}^2 \) be the 2-parameter family defined by
\[
f_{\lambda, \mu}([X : Y : Z]) = [P(X, Z) + \lambda Y Z^{d-1} : Q(Y, Z) + \mu X Z^{d-1} : Z^d].
\]
Let \(a_i, b_i \in \mathbb{Q}^* \) (for \(i = 1, 2 \)). If there exists a set of points \(\{\lambda : \mu : 1\} \) which is Zariski dense in \(\mathbb{P}^2 \) such that for each such pairs \((\lambda, \mu) \) both \([a_1 : b_1 : 1] \) and \([a_2 : b_2 : 1] \) are preperiodic for \(f_{\lambda, \mu} \) then for each \(\lambda, \mu \in \mathbb{Q} \), \([a_1 : b_1 : 1] \) is preperiodic for \(f_{\lambda, \mu} \) if and only if \([a_2 : b_2 : 1] \) is preperiodic for \(f_{\lambda, \mu} \).

We sketch briefly the ideas for proving Theorem 1.4. Let \(\{f_i\} \) be an algebraic family of rational maps on the projective line \(\mathbb{P}^1 \) parameterized by points \(\lambda \in Y(\overline{K}) \) where \(Y \) is an affine subset of the algebraic curve \(X \) over a number field \(K \). As mentioned above, we apply recent results of Yuan [28] and Yuan-Zhang [29] to our situation. The main result of [28] shows that points of small height with respect to a semipositive adelic metrized line bundle equidistribute with respect to the measures induced by this semipositive adelic metrized line bundle; the main result of [29] says that when semipositive metrics on a line bundle induce the same measures at a place, they must differ by a constant. Taken together, these results say, roughly, that if two appropriate height functions on a variety \(X \) that come from semipositive adelic metrized line bundles share a Zariski dense family of points of small heights, then the two height functions must be exactly the same. For a given family of points \(\{c_\lambda\} \), we consider the canonical heights \(\hat{h}_{f_\lambda}(c_\lambda) \) of \(c_\lambda \) associated to the map \(f_\lambda \). A key observation is that under appropriate conditions, a suitable multiple \(\hat{h}_{f_\lambda}(c_\lambda) \) induces a height function \(h_c \) coming from a metrized line bundle on \(X \) (see Section 5.2 for details). It follows that \(c_\lambda \) is a preperiodic point for \(f_c \) if and only if \(h_c(\lambda) = 0 \). Now, let \(c_1 \) and \(c_2 \) be two given families of points. For simplicity, here we only consider one family of rational maps \((f_1 = f_2 \) in the statement of the theorem) on \(\mathbb{P}^1 \) and assume that there are infinitely many \(\lambda \in Y(\overline{K}) \) such that both \(c_{1, \lambda} \) and \(c_{2, \lambda} \) are preperiodic for \(f_\lambda \). Let \(h_{c_i}, i = 1, 2 \) be the corresponding heights on \(X \) induced from \(\hat{h}_{f_\lambda}(c_{i, \lambda}), i = 1, 2 \) respectively. Then, the infinite set of parameters \(\lambda \) such that both \(c_{1, \lambda} \) and \(c_{2, \lambda} \) are preperiodic points for \(f_\lambda \) yields a Zariski dense set of small points on \(X \). Using the results of Yuan [28] and Yuan-Zhang [29] mentioned above, we conclude that the two height functions \(h_{c_1} \) and \(h_{c_2} \) are actually equal. Then we deduce that \(\hat{h}_{f_\lambda}(c_{1, \lambda}) = 0 \) if and only if \(\hat{h}_{f_\lambda}(c_{2, \lambda}) = 0 \) which concludes the proof of Theorem 1.4. Thus, our strategy follows that of [2], but in the language of adelic metrized line bundles rather than Green functions.

As a consequence of our method, using the notation from the previous paragraph, we prove that
\[
(1.4.1) \quad \hat{h}_{f_\lambda}(c(\lambda)) = \hat{h}_{f}(c) \cdot h_c(\lambda) + O(1),
\]
where \(\hat{h}_{f}(c) \) is the canonical height of \(c \in \mathbb{P}^1(F) \) under the action of \(f : \mathbb{P}^1 \to \mathbb{P}^1 \) (where \(F = K(X) \)). Formula (1.4.1) (which is proved in Theorem 5.3) extends a recent result of Ingram [18] to certain families of rational maps. See Section 5.2.
for the statement of Theorem 5.4 and a discussion of Ingram’s result [18] (which in turn extends previous results of Silverman [25] and Call-Silverman [8]).

The plan of our paper is as follows. In Section 2 we state Theorem 2.2 (which generalizes Theorem 1.1) and also state few of its consequences. We also make a conjecture that would generalize the results of this paper and place it in a more natural context. Section 3 describes the notation that is used throughout the paper. Then, in Section 4 we introduce metrized line bundles and state Yuan’s [28] equidistribution result and Yuan-Zhang’s [29] “Calabi-Yau” result on metrics that give rise to the same measure. Section 5 is devoted to setting up our problem so that the results from the previous section can be applied. In Sections 6 and 7 we prove that our metrics satisfy the necessary hypotheses that allow us to use the results of [28] and [29]. Section 8 contains a proof of Theorem 2.2 and of its consequences. In Section 9 we prove Theorem 1.4.

Acknowledgments. Part of this paper was completed during the semester program “Complex and Arithmetic Dynamics” at ICERM in spring 2012. The authors would like to thank ICERM for the support on participating the semester program. We also thank Matt Baker, Laura DeMarco, and Umberto Zannier for several conversations around this paper.

2. Statement of the main results

We make the following conjecture.

Conjecture 2.1. Let Y be any quasiprojective curve defined over $\overline{\mathbb{Q}}$, and let F be the function field of Y. Let $a, b \in \mathbb{P}^1(F)$, and let $V \subset X := \mathbb{P}^1_\overline{\mathbb{Q}} \times \mathbb{P}^1_\overline{\mathbb{Q}}$ be the $\overline{\mathbb{Q}}$-curve (a, b). Let $f : \mathbb{P}^1 \to \mathbb{P}^1$ be a rational map of degree $d \geq 2$ defined over F. If there exists an infinite sequence of points $\lambda_n \in Y(\overline{\mathbb{Q}})$ such that $\lim_{n \to \infty} \hat{h}_{f^*}(a(\lambda_n)) = \lim_{n \to \infty} \hat{h}_{f^*}(b(\lambda_n)) = 0$, then V is contained in a proper preperiodic subvariety of X under the action of $\Phi := (f, f)$.

Note that in the conjecture above, f induces a well-defined rational map $f_\lambda : \mathbb{P}^1 \to \mathbb{P}^1$ defined over $\overline{\mathbb{Q}}$ for all but finitely many $\lambda \in Y(\overline{\mathbb{Q}})$; as usual, $h_{\overline{\mathbb{Q}}}$ is the (global) canonical height corresponding to the rational map f_λ. One may also phrase a “Manin-Mumford”-type conjecture along the lines of Conjecture (2.1), which might hold for preperiodic points over C (where one cannot define a height function) rather than $\overline{\mathbb{Q}}$. We note that one cannot extend the above Conjecture to actions of two arbitrary families $(f_\lambda, g_\lambda) : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^1 \times \mathbb{P}^1$ (see the family of counterexamples from [14]).

Recall that a point $P \in \mathbb{P}^1$ is a superattracting periodic point for f if P is periodic of period n for f and that $(f^n)'(P) = 0$.

Theorem 2.2. Let K be a number field and let X be a smooth projective curve defined over K. Let $\eta \in X(K)$ and let $Y := X \setminus \{\eta\}$. We let A be the ring of rational functions on X which are regular on Y, defined over K. For each $a \in A$ we denote by $\deg(a) = -\text{ord}_\eta(a)$ where ord_η is the order of the pole η for the function a.

Suppose that we have rational functions $f_1 = P_1(x)/Q_1(x)$ and $f_2 = P_2(x)/Q_2(x)$ such that $P_i, Q_i \in A[x]$ and the leading coefficients of P_i and of Q_i are nonzero constants for $i = 1, 2$. Furthermore, assume that f_1 and f_2 satisfy the following conditions.
such that both

there exists an infinite family of

λ
totally ramified at infinity).

\[x^2 \]

We do not obtain explicit relations between the starting points for the iterations

local canonical height at an archimedean place for a rational map (which is not
totally ramified at infinity).

\[\text{Preperiodic points for families of rational maps} \]

Let \(c_i = \frac{a_i}{b_i} \) where \(a_i, b_i \in A \) and

\[
\begin{align*}
(a_i, b_i) &= A \quad \text{for } i = 1, 2, \\
\text{and and suppose that the two sequences } &\{\deg(f_i^n(c_i)) \mid n \in \mathbb{N}\} \text{ are not bounded. If there exists an infinite family of } \\
\lambda_n \in Y(K) \text{ such that } &
\lim_{n \to \infty} \hat{h}_{f_{1,i}}(c_1(\lambda_n)) = \lim_{n \to \infty} \hat{h}_{f_{2,i}}(c_2(\lambda_n)) = 0,
\end{align*}
\]

then for all \(\lambda \in Y(K) \), we have that \(\hat{h}_{f_{1,i}}(c_1(\lambda)) = 0 \) if and only if \(\hat{h}_{f_{2,i}}(c_2(\lambda)) = 0 \).

Remarks 2.3. (1) Condition (2) in Theorem 2.2 is equivalent to that \(\deg_x P_i(x) \geq \deg_x Q_i(x) + 2 \) for both \(i = 1, 2 \).

(2) Theorem 2.2 yields that under the above hypotheses, \(c_1(\lambda) \) is preperiodic under \(f_{1,1} \) if and only if \(c_2(\lambda) \) is preperiodic under \(f_{1,2} \) since a point has canonical height equal to 0 if and only it is preperiodic.

(3) We believe that Theorem 2.2 should hold under more general hypotheses, i.e., the conclusion should still hold as long as neither \(c_1 \) nor \(c_2 \) is a (persistent) preperiodic point for \(f_1 \), respectively for \(f_2 \). In particular, Theorem 2.2 should hold also for families of Lattès maps associated to multiplication-by-

2 on the elliptic curves \(E_\lambda \), in which case one would establish a Bogomolov type result for the main theorems of Masser and Zannier from [20, 21, 22].

We have the following corollary (for more consequences, see our Section 8).

Corollary 2.4. Let \(P_i, Q_i, R_i \in \overline{\mathbb{Q}}[x] \) be nonconstant polynomials such that \(\deg(P_i) > \deg(Q_i) + \deg(R_i) \) for \(i = 1, 2 \). Let \(c_1, c_2 \in \overline{\mathbb{Q}} \) such that \(c_1 \) is preperiodic under the action of \(P_1(x)/Q_1(x) \), while \(c_2 \) is not preperiodic under the action of \(P_2(x)/Q_2(x) \). Then for any two nonconstant polynomials \(g_1, g_2 \in \overline{\mathbb{Q}}[x] \) such that \(g_1(0) = g_2(0) = 0 \), there exist at most finitely many \(\lambda \in \overline{\mathbb{Q}} \) such that both \(g_1(\lambda) + c_1 \) and \(g_2(\lambda) + c_2 \) are preperiodic under the actions of \(P_1(x)/Q_1(x) + \lambda \cdot R_1(x) \), respectively of \(P_2(x)/Q_2(x) + \lambda \cdot R_2(x) \).

We present here a brief comparison of Theorem 2.2 with the results from [15]. Firstly, our present method covers all the families of polynomials treated by the authors in [15]; however, it does not provide explicit relations between the starting points \(c_1 \) and \(c_2 \) as provided in [15] (see also [2]). The fact that in Theorems 1.1 and 2.2 we do not obtain explicit relations between the starting points for the iterations (as obtained in [2, 15]) is due to the fact that the analytic uniformization using Bottcher’s Theorem (see [9]) cannot be used for giving an explicit formula for the local canonical height at an archimedean place for a rational map (which is not
totally ramified at infinity).

3. Notation and Preliminaries

For any quasiprojective variety \(X \) endowed with an endomorphism \(\Phi \), we call a point \(x \in X \) preperiodic if there exist two distinct nonnegative integers \(m \) and \(n \)
such that $\Phi^m(x) = \Phi^n(x)$, where by Φ^i we always denote the i-th iterate of the endomorphism Φ. If $x = \Phi^n(x)$ for some positive integer n, then x is a periodic point of period n.

Let K be a number field; we let Ω_K be the set of all absolute values of K which extend the (usual) absolute values of \mathbb{Q}. For each $v \in \Omega_K$, we let v_0 be the (unique) absolute value of \mathbb{Q} such that $v|_{\mathbb{Q}} = v_0$ and we let $N_v := [K_v : \mathbb{Q}_{v_0}]$. The (naive) Weil height of any point $x \in K$ is defined as

$$h(x) = \sum_{v \in \Omega_K} \frac{N_v}{|K : \mathbb{Q}|} \cdot \log \max \{1, |x|_v\}.$$ We will use the notation $\log^+(z)$ for $\log \max \{1, z\}$ for any real number z.

There exists a product formula for all nonzero elements x of K, i.e.,

$$\prod_{v \in \Omega_K} |x|_v^{N_v} = 1.$$ We fix an algebraic closure \overline{K} of K, and let $v \in \Omega_K$. Let \mathbb{C}_v be the completion of a fixed algebraic closure of the completion of $(K, | \cdot |_v)$. When v is an archimedean valuation, then $\mathbb{C}_v = \mathbb{C}$. We use the same notation $| \cdot |_v$ to denote the extension of the absolute value of $(K_v, | \cdot |_v)$ to \mathbb{C}_v and we also fix an embedding of \mathbb{K} into \mathbb{C}_v.

Let $P = [x_0, \ldots, x_k] \in \mathbb{P}^k(\overline{K})$ be given and let $P[1], \ldots, P[\ell]$ denote the Gal(\mathbb{K}/K)-conjugates of P. We let $h_v(P) := \log (\max \{|x_0|_v, \ldots, |x_k|_v\})$. Recall that the Weil height of P is given as follows.

$$h(P) := \frac{1}{\ell} \sum_{i=1}^{\ell} \sum_{v \in \Omega_K} N_v h_v(P[i]).$$ In this paper, we are primarily interested in points on the projective line ($k = 1$). We fix an affine coordinate z on \mathbb{P}^1 and use the identification $\mathbb{P}^1(F) = F \cup \{\infty\}$ for any field F. That is, a point $x \in F$ is identified with the point $P = [x, 1] \in \mathbb{P}^1(F)$. The Weil height of $P = [x, 1]$ is simply denoted by $h(x)$.

Let $f \in K(x)$ be any rational map of degree $d \geq 2$. In [8], Call and Silverman defined the global canonical height $\widehat{h}_f(x)$ for each $x \in \mathbb{K}$ as

$$\widehat{h}_f(x) = \lim_{n \to \infty} \frac{h(f^n(x))}{d^n}.$$ In addition, Call and Silverman proved that the global canonical height decomposes as a sum of the local canonical heights, i.e.,

$$(3.0.1) \quad \widehat{h}_f(x) = \frac{1}{[K(x) : K]} \sum_{\sigma : K \to K} \sum_{v \in \Omega_K} N_v \widehat{h}_{f,v}(x^\sigma),$$ where for each $v \in \Omega_K$ and for each $z \in \mathbb{C}_v$ we have

$$\widehat{h}_{f,v}(z) = \lim_{n \to \infty} \frac{\log^+ |f^n(z)|_v}{d^n}.$$ Using Northcott’s Theorem one deduces that x is preperiodic for f if and only if $\widehat{h}_f(x) = 0$. This last statement does not hold if K is a function field over a smaller field K_0 since $\widehat{h}_f(x) = 0$ for all $x \in K_0$ if f is defined over K_0.

We define heights in function fields similarly (see [5, 19]). So, if F is a function field of a projective normal variety \mathcal{V} defined over a field K we denote by Ω_F the set of all absolute values on F associated to the irreducible divisors of \mathcal{V}. Then there
exist positive integers N_v (for each $v \in \Omega_F$) such that $\prod_{v \in \Omega_F} |x|^N_v = 1$ for each nonzero $x \in F$. Also, we define the Weil height of any $P := [x_0 : \cdots : x_n] \in \mathbb{P}^n(F)$ as

$$h(P) = \sum_{v \in \Omega_F} N_v \cdot \log \left(\max \{|x_0|_v, \ldots, |x_n|_v\} \right).$$

Following [8], we let the canonical height of P with respect to an endomorphism φ of \mathbb{P}^n of degree $d \geq 2$ be

$$\hat{h}_\varphi(P) = \lim_{n \to \infty} \frac{h(\varphi^n(P))}{d^n}.$$

4. Heights and metrized line bundles

Let L be a line bundle on a nonsingular projective variety X over a number field K and let $| \cdot |_v$ be an absolute value on K. We say that $| \cdot |_v$ is a metric on L if

$$|\langle \alpha s \rangle(P)|_v = |\alpha|_v |s(P)|_v$$

for any $P \in X(K_v)$ and any section s. We say that \mathcal{L} is an adelic metrized line bundle over K if it is equipped with a metric $| \cdot |_v$ at each place v of K.

When $| \cdot |_v$ is smooth and v is archimedean, we can form the curvature $c_1(\mathcal{L})_v$ of $| \cdot |_v$ as

$$c_1(\mathcal{L})_v = \frac{\partial \log | \cdot ||_v}{\partial t}$$

on $X(\mathbb{C})$. At the nonarchimedean places, Chambert-Loir [10] has constructed an analog of curvature on $X^an_{\mathbb{C}}$, using methods from Berkovich spaces, in the case where the metric on the line bundle is algebraic in the sense of being determined by the extension of L to a line bundle \mathcal{L} on a model \mathcal{X} for X over \mathcal{O}_K; that is, where $|s(P)|_v$ is determined by the intersection of $\text{div} \ s$ with the Zariski closure of P in \mathcal{X} at the place v.

An adelic metrized line bundle \mathcal{L} is said to be algebraic if there is a model \mathcal{X} that induces the metric $| \cdot |_v$ at each non-archimedean place. An adelic metrized line bundle \mathcal{T} is said to be semipositive (see [28, 31]) if there is a family of algebraic adelic metrized line bundles \mathcal{T}_n (with metrics denoted as $| \cdot ||_{v,n}$) such that:

1. at each v, we have that $\log | \cdot ||_{v,n}$ converges uniformly (over all of $X(K_v)$) to $\log | \cdot |_v$;
2. for each n and each archimedean v, the metric $| \cdot ||_{v,n}$ is smooth and the curvature of $| \cdot ||_{v,n}$ is nonnegative; and
3. for all n, all nonarchimedean v, and any curve complete C on the model \mathcal{X}_n determining the metric $| \cdot |_v$ on L_n, the line bundle \mathcal{L}_n (described above) pulls back to a divisor of positive degree on C.

In this case, one can assign a curvature $c_1(\mathcal{L})_v$ to \mathcal{T} at each place v by taking the limits of the curvatures of the metrics on \mathcal{T}_n.

For any semipositive line bundle on a nonsingular subvariety X and any subvariety Z of X, one can define a height $h_\mathcal{L}(Z)$ (see [31]). In the case of points $x \in X(K)$, with $\text{Gal}(\overline{K}/K)$-conjugates $x^{[1]}, \ldots, x^{[\ell]}$ for example, it is defined as

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \sum_{v \in \Omega_K} -N_v \cdot \log |s(x^{[i]})|_v$$ (4.0.2)
where \(s \) is a meromorphic section of \(L \) with support disjoint from the conjugates of \(x \).

The following result states a fundamental equidistribution principle for points of small height on an adelic metrized line bundle which is pivotal for our proof.

Theorem 4.1. [28] Theorem 3.1] Suppose \(X \) is a projective variety of dimension \(n \) over a number field, and \(\mathcal{L} \) is an adelic metrized line bundle over \(X \) such that \(L \) is ample and the adelic metric is semipositive. Let \(\{x_m\} \) be an infinite sequence of algebraic points in \(X(\mathbb{K}) \) which is generic and small. Then for any place \(v \) of \(K \), the Galois orbits of the sequence \(\{x_m\} \) are equidistributed in the analytic space \(\mathcal{X}^n_v \) with respect to the probability measure \(d\mu_v = c_1(\mathcal{L})_1^n / \deg_L(X) \).

The next result we need can be stated for an individual metric \(\| \cdot \|_v \), where \(v \in \Omega_K \) and \(L \) is an ample line bundle on a variety \(X \) over \(K_v \). Recall that a metric \(\| \cdot \|_v \) is said to be semipositive (see [28, 31]) for archimedean \(v \) when it is a uniform limit of smooth metrics meeting condition (2) above and that it is semipositive for nonarchimedean \(v \) when it is a uniform limit of algebraic metrics meeting condition (3) above.

Theorem 4.2. [29] Theorem 1.1] Let \(L \) be an ample line bundle over \(X \), where \(X \) is a projective variety over \(K_v \), and let \(\| \cdot \|_{v,1} \) and \(\| \cdot \|_{v,2} \) be two semipositive metrics on \(L \). Then \(c_1(L, \| \cdot \|_{v,1})^{\dim X} = c_1(L, \| \cdot \|_{v,2})^{\dim X} \) if and only if \(\| \cdot \|_{v,1} \) is a constant.

Combining Theorems 4.1 and 4.2, we have the following result.

Corollary 4.3. Let \(L \) be an ample line bundle on \(X \) and let \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) be two semipositive adelic metrized line bundles over a number field \(K \), each consisting of metrics on the same line bundle \(L \). Let \(\{x_m\} \) be an infinite sequence of algebraic points in \(X(\mathbb{K}) \) that are Zariski dense in \(X \). Suppose that

\[
\lim_{m \to \infty} h_{\mathcal{T}_1}(x_m) = \lim_{m \to \infty} h_{\mathcal{T}_2}(x_m) = h_{\mathcal{T}_1}(X) = h_{\mathcal{T}_2}(X) = 0.
\]

Then \(h_{\mathcal{T}_1}(z) = h_{\mathcal{T}_2}(z) \) for all \(z \in X(\mathbb{K}) \).

Proof. Note that this is implicit in [29, Section 3], but for completeness, we give a proof. By Theorem 4.1, the sequence \(\{x_m\} \) equidistribute with respect to both \(c_1(\mathcal{T}_1)_v^{n-1} / \deg_L(X) \) and \(c_1(\mathcal{T}_2)_v^{n-1} / \deg_L(X) \). Therefore, those two measures are the same, so the metrics are proportional. Since \(h_{\mathcal{T}_1}(z) \) and \(h_{\mathcal{T}_2}(z) \) are computed by evaluating \(- \log \|s\|_{v,1}\) and \(- \log \|s\|_{v,2}\) at \(z \), it follows that \(h_{\mathcal{T}_1} \) and \(h_{\mathcal{T}_2} \) differ by a constant. Since there is a sequence on which both converge to the same value, this constant must be zero.

As an example of family of metrics on the line bundle \(L = \mathcal{O}_{\mathbb{P}^k}(1) \) on the projective space \(\mathbb{P}^k \), let \(F_n : \mathbb{P}^k \to \mathbb{P}^k \) be a family of morphisms written with respect to some coordinates \([X_0, \ldots, X_k]\):

\[
F_n = [F_n^0 : \cdots : F_n^k]
\]

where each \(F_n^i \) is a homogeneous polynomial of degree \(e_n \) in \(X_0, \ldots, X_n \). Then one might hope to metrize \(L \) as follows. Let \(s = a_0X_0 + \cdots + a_kX_k \) be a global section of \(L \). Then at an archimedean place \(v \), we define
(4.3.2) \[\|s(t_0, \ldots, t_k)\|_{v,n} = \frac{|a_0t_0 + \cdots + a_k t_k|_v}{\left(|F_n^0(t_0, \ldots, t_k)|_v^2 + \cdots + |F_n^k(t_0, \ldots, t_k)|_v^2 \right)^{1/(2e_n)}} \]

and at a nonarchimedean place \(v \) we define

(4.3.3) \[\|s(t_0, \ldots, t_k)\|_{v,n} = \frac{|a_0t_0 + \cdots + a_k t_k|_v}{\max \left\{ |F_n^0(t_0, \ldots, t_k)|_v, \cdots, |F_n^k(t_0, \ldots, t_k)|_v \right\}^{1/e_n}}. \]

At archimedean places, for each \(n \), we are essentially working with the Fubini-Study metric after pull-back by \(F_n \) while at the nonarchimedean places we are working with the intersection metric after pull-back by \(F_n \). As long as the family of metrics \(\| \cdot \|_{v,n} \) converges uniformly, their limit gives a semipositive metric on \(L \).

5. Family of rational maps and specializations

In this section, we study a one parameter family of rational maps. Several different height functions appear into the picture. We prove a specialization theorem for these heights in the family of rational maps in question. A similar result has been proved by Call and Silverman [8, Theorem 4.1]. Using the method described in Section 4, we are able to give more precise information contained in the specialization theorem. Now let \(K \) be a number field. We fix the following notation throughout this section.

Notation.

- \(X \) a smooth, absolutely irreducible projective curve over \(K \),
- \(\eta \) a fixed \(K \)-rational point of \(X \),
- \(Y = X \setminus \{ \eta \} \),
- \(F = K(X) \) the field of rational function on \(X \),
- \(A = \Gamma(Q_X, Y) \subset F \) the ring of rational functions of \(X \) regular away from \(\eta \),
- \(u \) a uniformizer of \(\eta \) (defined over \(K \)),
- \(\text{deg}(\cdot) = -\text{ord}_\eta(\cdot) \).

By the definition of the degree function we have that \(\text{deg}(a) \geq 0 \) for all \(a \in A \).

Let \(a \in A \) be such that \(\text{deg}(a) = n \). Then the function \(g_a := au^n \) has no pole at \(\eta \). We call the constant \(g_a(\eta) \) the **leading coefficient of** \(a \).

5.1. Family of rational maps. We consider a morphism

\[
f : \mathbb{P}^1 \to \mathbb{P}^1
\]

of degree \(d \geq 2 \) over \(F \) and write

\[
f(x) = \frac{P(x)}{Q(x)} \quad \text{where } P(x), Q(x) \in A[x]
\]

such that \(\text{GCD}(P, Q) = 1 \) (\(P \) and \(Q \) are viewed as elements in \(F[x] \)). For ease of the notation, we put \(d_P := \text{deg}_x P(x) \) and \(d_Q = \text{deg}_x Q(x) \). For a point \(\lambda \in Y \), we use the following convention:

\[
P_\lambda(x) = \sum_{i=0}^{d_P} c_{P,d_P-i}(\lambda) x^i, \quad Q_\lambda(x) = \sum_{j=0}^{d_Q} c_{Q,d_Q-j}(\lambda) x^j
\]
and
\[f_\lambda(x) = \frac{P_\lambda(x)}{Q_\lambda(x)} \quad \text{whenever } f_\lambda \text{ is well defined.} \]

Here, \(c_{P,i}, c_{Q,j} \in A \) are coefficients of \(P(x) \) and \(Q(x) \) respectively. Thus, \(f \) gives rise to a family of rational maps \(\{f_\lambda\} \) parameterized by points \(\lambda \) ranging over an affine open subset of \(X \). In the following, we work under the hypothesis of Theorem 2.2.

Equivalently, \(f \) satisfies the following conditions:

1. \(d_P \geq d_Q + 2; \)
2. the leading coefficients of both \(P \) and \(Q \) as polynomials in \(x \) are constant; and
3. the resultant \(R(f) \in A \) of \(P(x) \) and \(Q(x) \) is also a constant in \(K^* \).

Condition (1) yields that \(d = \max\{d_P, d_Q\} = d_P \) and \(s = d_P - d_Q \geq 2 \).

Note that when \(f(x) \) is a polynomial we have \(s = d \).

In this case, we set \(Q(x) = 1 \) and \(c_{Q,0} = 1 \).

By abuse of the notation, we also write \(P(X, Y) \) and \(Q(X, Y) \) for the homogeneous polynomials (in \(X, Y \)) of degree \(d_P \) and \(d_Q \) respectively, and let
\[
F : \mathbb{P}^1 \rightarrow \mathbb{P}^1 \quad F([X, Y]) = [P(X, Y), Q(X, Y)]
\]
be a (fixed) representation of the given map in homogeneous coordinates of \(\mathbb{P}^1 \).

Using (3) above, it follows that there exist polynomials \(S, T, U, V \in A[X, Y] \) homogeneous in variables \(X, Y \) and positive integer \(t \geq d \) such that
\[
SP + TQ = X^t \quad \text{and} \quad UP + VQ = Y^t
\]
where the homogeneous degrees (in \(X \) and \(Y \)) are
\[
\deg S = \deg T = \deg U = \deg V = t - d.
\]

Let \(c := \frac{a}{b} \) be a rational function on \(X \), where \(a, b \in A \). We assume that the ideal
\[
(a, b) = A
\]
i.e., \(a \) and \(b \) are relatively prime.

Put
\[
m_1 = \max_{i=1}^{d_P} \left(\frac{\deg c_{P,i}}{i} \right) \quad \text{and} \quad m_2 = \max_{j=1}^{d_Q} \left(\frac{\deg c_{Q,j}}{j} \right),
\]
and \(m = m_1 + m_2 \). By convention we set \(m_2 = 0 \) in the case where \(f \) is a polynomial map. The degree function \(\deg \) on \(A \) has a natural extension to \(F \) given by \(\deg(c) = \deg(a) - \deg(b) \) for \(c \in F \) given above. In this section and the next, we assume that \(c \) satisfies
\[
\deg(c) > m.
\]
In particular, we know that \(\deg(c) \geq 1 \) (since \(m \geq 0 \)). In the following, we also set \(d_a := \deg(a) \), \(d_b := \deg(b) \) and \(d_c := \deg(c) \).

For each integer \(n \geq 0 \) we let \(A_{c,n} \) and \(B_{c,n} \) be elements in \(A \) defined recursively as follows:
\[
A_{c,0} = a \quad \text{and} \quad B_{c,0} = b,
\]
A\n\n\n\n\n\n\nwhile for all \(n \geq 0 \) we have
\[
A_{c,n+1} = P(A_{c,n}, B_{c,n}) \quad \text{and} \quad B_{c,n+1} = Q(A_{c,n}, B_{c,n}).
\]

Proposition 5.1. For all \(n \geq 1 \), we have that \((A_{c,n}, B_{c,n}) = \mathbf{A}\) and \(\deg(A_{c,n}) = d_a \cdot d^n\) while \(\deg(B_{c,n}) = d_a d^n - d_c s^n\). Furthermore, the leading coefficient of \(A_{c,n}\) is \(c_{P,0}^{(d^n-1)/(d-1)} \cdot c_a^d\), where \(c_a\) is the leading coefficient of \(a\).

Proof. The computation of degrees is straightforward using (5.0.8). The computation for the leading coefficient of \(A_{c,n}\) follows from the definition of the leading coefficient and induction on \(n\).

We show next that \(A_{c,n}\) and \(B_{c,n}\) are relatively prime polynomials. This assertion follows easily by induction on \(n\); the case \(n = 0\) is immediate.

Assume \(A_{c,n}\) and \(B_{c,n}\) are relatively prime for some \(n \geq 0\) and we prove that \(A_{c,n+1}\) and \(B_{c,n+1}\) are also relatively prime. Substitute \(X = A_{c,n}\) and \(Y = B_{c,n}\) into (5.0.3) and (5.0.5) and by the recursive relations (5.0.9) and (5.0.10), we have
\[
S(A_{c,n}, B_{c,n})A_{c,n+1} + T(A_{c,n}, B_{c,n})B_{c,n+1} = A_{c,n}^t \quad \text{and} \quad U(A_{c,n}, B_{c,n})A_{c,n+1} + V(A_{c,n}, B_{c,n})B_{c,n+1} = B_{c,n}^t.
\]

It follows that the ideals \((A_{c,n}, B_{c,n}) \subseteq (A_{c,n+1}, B_{c,n+1})\). Since by the induction hypothesis we have that \((A_{c,n}, B_{c,n}) = \mathbf{A}\), we conclude that \((A_{c,n+1}, B_{c,n+1}) = \mathbf{A}\). This completes the induction and the proof of Proposition 5.1.

Remark 5.2. Note that by the definition of the iterates \(f^n\), we have \(f^n(c) = \frac{A_{c,n}}{B_{c,n}}\), and thus Proposition 5.1 yields that \(c\) is not preperiodic under the action of \(f\).

The following is an easy corollary of Proposition 5.1:

Corollary 5.3. With the above notation, if \(c(\lambda)\) is preperiodic under the action of \(f_\lambda\), then \(\lambda \in Y(K)\).

Proof. If \(c(\lambda)\) is preperiodic under \(f_\lambda\), then for some positive integers \(n > m\) we have \(f^n(\lambda)(c)) = f^m(\lambda)(c))\). So,
\[
\frac{A_{c,n}(\lambda)}{B_{c,n}(\lambda)} = \frac{A_{c,m}(\lambda)}{B_{c,m}(\lambda)},
\]
where \(A_{c,n}\) and \(B_{c,n}\), and also \(A_{c,m}\) and \(B_{c,m}\) are relatively prime. Thus \(\lambda\) is a zero of the nonzero rational function \(A_{c,n}B_{c,m} - A_{c,m}B_{c,n}\) over \(K\), and hence \(\lambda \in Y(K)\).

5.2. Specialization theorem. For a given rational map \(f\) of degree \(d \geq 2\) over \(F\) and a point \(c \in \mathbb{P}^1(F)\), there are three heights: \(\hat{h}_f(c(\lambda)), \hat{h}_f(c)\), and \(h(\lambda)\). Namely, given \(\lambda \in X(K)\) such that \(f_\lambda\) is a well-defined rational map \(f_\lambda\) over \(K(\lambda)\), the height \(h_f(c(\lambda))\) is the canonical height of \((c(\lambda))\) associated to \(f_\lambda\) and \(h(\lambda)\) is a Weil height associated to a degree one divisor class on \(X\); while \(\hat{h}_f(c)\) is the canonical height of \(c\) associated to \(f\) over \(F\). Call and Silverman [8, Theorem 4.1] have shown that
\[
\hat{h}_f(c(\lambda)) = \hat{h}_f(c)h(\lambda) + o(h(\lambda))
\]
which generalizes a result of Silverman [2] on heights of families of abelian varieties.

In a recent paper [8], Ingram shows that for a family of polynomial maps \(f \in F[x]\)
and \(P \in \mathbb{P}^1(F) \), there is a divisor \(D = D(f, P) \in \text{Pic}(X) \otimes \mathbb{Q} \) of degree \(\hat{h}_f(P) \) such that
\[
\hat{h}_f(P) = h_D(\lambda) + O(1).
\]
This result is an analogue of Tate's theorem \cite{Tate} in the setting of arithmetic dynamics. Using this result and applying an observation of Lang, the error term in \((5.3.1)\) is improved to \(O(h(\lambda)^{1/2}) \) and furthermore, in the special case where \(X = \mathbb{P}^1 \), the error term can be replaced by \(O(1) \) \cite{Lang} Corollary 2.

In order to apply Theorem 4.2 to our situation, the error term in \((5.3.1)\) needs to be controlled within \(O(1) \). In general, this may not be true without further restrictions on \(f \) and \(P \). Ingram’s result shows that this is true if \(f \) is a polynomial map and the parameter space \(X = \mathbb{P}^1 \). In this paper, we provide another set of conditions for \(f \) and the point \(P \in \mathbb{P}^1(F) \) so that the error term in \((5.3.1)\) is \(O(1) \).

Theorem 5.4. Let \(f(x) := P(x)/Q(x) \in F(x) \) be of degree \(d \geq 2 \) over \(F \) and assume that \(f \) satisfies the following conditions

1. the resultant \(R(f) \) and the leading coefficients of \(P(x) \) and \(Q(x) \) are nonzero constants;
2. the point \(x = \infty \) is a superattracting periodic point for \(f \).

Let \(c \in \mathbb{P}^1(F) \) be such that the sequence \(\{\deg(f^n(c))\}_{n \geq 0} \) is unbounded. Then for \(\lambda \in Y(K) \) we have
\[
\hat{h}_{f \lambda}(c(\lambda)) = \hat{h}_f(c)h(\lambda) + O(1)
\]
where \(h \) is a height function associated to the divisor class containing the divisor \(\eta \).

Remark 5.5. We actually show that the function \(\hat{h}_{f \lambda}(c(\lambda))/\hat{h}_f(c) \) is a height function coming from a metrized line bundle on \(X \). In the case proved by Ingram that is not covered by our theorem, i.e. the case where \(f \) is a polynomial with parameter space \(X = \mathbb{P}^1 \) and \(c \in \mathbb{P}^1(F) \) without any further restriction, it would be interesting to see whether or not \(\hat{h}_{f \lambda}(c(\lambda))/\hat{h}_f(c) \) also gives rise to a height function coming from a metrized line bundle on \(\mathbb{P}^1 \).

Theorem 5.4 will follow from Proposition 7.3 proved below. The proof of Theorem 5.7 follows the idea described in Section 4 and will be given later. The following two sections are devoted to the proof of Proposition 7.3.

6. Growth of the iterates in fibers above \(X \)

We continue with the notation from the previous Section.

Recall that we have fixed a uniformizer \(u \) of \(\eta \). Then there exists a Zariski open neighborhood \(Z \) of \(\eta \) such that the uniformizer \(u \) is a regular function on \(Z \). We fix such a neighborhood of \(\eta \). For a given place \(v \in \Omega_K \), \(Y(C_v) \) has a topology called the \(v \)-adic topology induced by the absolute value \(| \cdot |_v \) on \(C_v \). Each \(a \in A \) yields a continuous function \(a : Y(C_v) \to C_v \) with respect to the \(v \)-adic topology. For any large \(L > 0 \), we let \(V_{L,v} \subset Z(C_v) \) be the \(v \)-adic open neighborhood of \(\eta \) containing all points \(\lambda \in Z(C_v) \) such that \(|u(\lambda)|_v < \frac{1}{L} \). If there is no danger of confusion, we drop the subscript \(v \) below. Denote the complement of \(V_L \) by \(U_L := X(C_v) \setminus V_L \subset Y(C_v) \). It follows that \(a \) is bounded on \(U_L \). Let \(n = \deg(a) \) and put \(g_a = u^n \). By increasing \(L \) if necessary, we may assume that \(g_a \) is bounded on \(V_L \); let \(C > 0 \) be an upper bound for \(|g_a|_v \) on \(V_L \). Thus for each \(\lambda \) in the boundary of \(V_L \) we have that \(|a(\lambda)|_v \leq CL^n \). Furthermore, for \(L \) sufficiently large, the maximum of \(|a(\lambda)|_v \) on \(U_L \) is attained on the boundary of \(U_L \) (which is the
same as the boundary of V_L) and thus $|a(\lambda)|_v \leq CL^n$ for all $\lambda \in U_L$. Note that even though apriori, C depends on L (and also on a and v), the dependence on L is not essential since once we replace L with a larger number L', the same value of C would work as an upper bound for g_a on $V_{L'}$ because $V_{L'} \subset V_L$ (this fact will be used in our proof). More generally, for a nonempty finite subset T of A and large L, by shrinking V_L if necessary, we may assume that there exists a positive constant C depending only on T and v such that the inequality $|a(\lambda)|_v \leq CL^n$ holds for all $a \in T$ and $\lambda \in U_L$ where $n = \max_{a \in T} \deg(a)$. Furthermore, for any polynomial $g(x) \in \mathbb{C}_v[x]$ we define $|g|_v$ to be the maximum of the v-adic norms of its coefficients.

Proposition 6.1. Let $v \in \Omega_K$ be any place, and let $M_n(\lambda) := \max\{|A_{e,n}(\lambda)|_v, |B_{e,n}(\lambda)|_v\}$ for each $n \geq 0$ and $\lambda \in \mathbb{Y}(\mathbb{C}_v)$. Let $L \geq 1$ be a large positive number and let $U_L \subset \mathbb{Y}(\mathbb{C}_v)$ be determined as above. Then, there exist positive constants C_1, C_2 depending only on v, L and on the coefficients $c_{P,j}$ of P and $c_{Q,j}$ of Q such that for all $n \geq 0$ we have

$$C_1 M_n(\lambda)^d \leq M_{n+1}(\lambda) \leq C_2 M_n(\lambda)^d$$

for all $\lambda \in U_L$.

Proof. Let $\lambda \in U_L$ be given. The proof uses standard techniques in height theory. Before we deduce the upper bound in the above inequalities, we first note that

$$|P_\lambda|_v = \max\{|c_{P,i}(\lambda)|_v : i = 0, \ldots, d_P\} \quad \text{and} \quad |Q_\lambda|_v = \max\{|c_{Q,j}(\lambda)|_v : j = 0, \ldots, d_Q\}.$$

There exists a constant C_3 depending only on L and on the coefficients of P_λ such that $|P_\lambda|_v \leq C_3 L^{m_1 d_P}$ and $|Q_\lambda|_v \leq C_3 L^{m_2 d_Q}$ for all $\lambda \in U_L$. For any integer k, we use the following notation

$$\varepsilon_v(k) = \begin{cases} k & \text{if } v \text{ is archimedean,} \\ 1 & \text{if } v \text{ is nonarchimedean.} \end{cases}$$

By \(5.0.9\) and \(5.0.10\), we have that

$$|A_{e,n+1}(\lambda)|_v = |P_\lambda (A_{e,n}(\lambda), B_{e,n}(\lambda))|_v$$

$$\leq (\varepsilon_v(d_P + 1)|P_\lambda|_v) M_n(\lambda)^d P$$

$$\leq (\varepsilon_v(d_P + 1)C_3 L^{m_1 d_P}) M_n(\lambda)^d P$$

and

$$|B_{e,n+1}(\lambda)|_v \leq |B_{e,n}(\lambda)^n Q_\lambda (A_{e,n}(\lambda), B_{e,n}(\lambda))|_v$$

$$\leq (\varepsilon_v(d_Q + 1)C_3 L^{m_2 d_Q}) M_n(\lambda)^d P.$$

So, the right-hand side inequality from the conclusion of Proposition 6.1 holds with $C_2 = \varepsilon_v(d_P + 1)C_3 (L^{m_1 d_P} + L^{m_2 d_Q})$, for example.

Next, we deduce a complementary inequality. For this, we substitute $X = A_{e,n}$ and $Y = B_{e,n}$ into \(5.0.4\) and \(5.0.5\). Then, as in the proof of Proposition 6.1 we have

$$S(A_{e,n}, B_{e,n})A_{e,n+1} + T(A_{e,n}, B_{e,n})B_{e,n+1} = A_{e,n}^t$$

and

$$U(A_{e,n}, B_{e,n})A_{e,n+1} + V(A_{e,n}, B_{e,n})B_{e,n+1} = B_{e,n}^t.$$
Note that, as polynomials in variables X and Y, the coefficients of S, T, U and V are in \mathbf{A}. Let the maximal degrees of coefficients of S, T, U and V be ℓ. Then for $\lambda \in U_L$ there exists a positive real constant C_4 such that

$$\max\{|S|_v, |T|_v, |U|_v, |V|_v\} \leq C_4 L^\ell.$$

Applying triangle inequality, we have

$$|A_{c,n}(\lambda)|_v^t \leq \epsilon_v(t - d_P + 1)|S|_v M_n(\lambda)^{t-d_P} M_{n+1}(\lambda) + \epsilon_v(t - d_P + 1)|T|_v M_n(\lambda)^{t-d_P} M_{n+1}(\lambda)$$

$$\leq 2\epsilon_v(t - d_P + 1)C_4 L^\ell M_n(\lambda)^{t-d_P} M_{n+1}(\lambda)$$

and similarly,

$$|B_{c,n}(\lambda)|_v^t \leq 2\epsilon_v(t - d_P + 1)C_4 L^\ell M_n(\lambda)^{t-d_P} M_{n+1}(\lambda)$$

Hence,

$$M_n(\lambda)^t \leq 2\epsilon_v(t - d_P + 1)C_4 L^\ell M_n(\lambda)^{t-d_P} M_{n+1}(\lambda)$$

and thus the desired lower bound from Proposition 6.1 is obtained by taking $C_1 = 1/(2\epsilon_v(t - d_P + 1)C_4 L^\ell)$ and note that $d_P = d$.

Next, we fix $v \in \Omega_K$ and show that $M_n(\lambda)$ also satisfies similar relations as stated in Proposition 6.1 for $\lambda \in V_L$ with L large enough. In the following the notation $v\text{-}\lim_{\lambda \to \eta}$ means that the limit is taken for the point λ approaching η with respect to the v-adic topology. We first observe that

$$v\text{-}\lim_{\lambda \to \eta} |P_\lambda(c(\lambda))|_v = |c_P|_v \quad \text{and} \quad v\text{-}\lim_{\lambda \to \eta} |Q_\lambda(c(\lambda))|_v = |c_Q|_v.$$

Indeed, the assertions follow from the choice of $d_c = \deg c$ such that $id_c > \deg c_{P,i}$ for $i = 1, \ldots, d_P$ and $jd_c > \deg c_{Q,j}$ for $j = 1, \ldots, d_Q$. Furthermore, we have $v\text{-}\lim_{\lambda \to \eta} |c(\lambda)|_v |u(\lambda)|_v^{d_c} = |c_n/c_b|_v$ and $v\text{-}\lim_{\lambda \to \eta} |f_\lambda(c(\lambda))|_v/|c(\lambda)|_v^{d_c} = |c_{P,0}/c_{Q,0}|_v$. It follows that there exist positive real numbers $L_1 > 1$ and $\delta_1 < 1$ such that for all $\lambda \in V_{L_1} \setminus \{\eta\}$ we have

(6.1.1) \[\delta_1 |c(\lambda)|_v^s \leq |f_\lambda(c(\lambda))|_v \leq \frac{1}{\delta_1} |c(\lambda)|_v^s \]

(6.1.2) \[\delta_1 |z(\lambda)|_v^{d_c} \leq |c(\lambda)|_v \leq \frac{1}{\delta_1} |z(\lambda)|_v^{d_c} , \]

where, for convenience, we set $z = 1/u$ so that $z(\lambda) = 1/u(\lambda)$ for $\lambda \in V_L \setminus \{\eta\}$. Furthermore, without loss of generality, we may assume that $\delta_1 < \frac{|c_{P,0}|_v}{2|c_{Q,0}|_v}$.

Lemma 6.2. Let $L_2 \geq L_1$ be a real number. Then there exists a real number $L_3 \geq L_2$ such that for all $x \in F$ satisfying $|x(\lambda)/c(\lambda)|_v > 2$ for all $\lambda \in V_{L_2} \setminus \{\eta\}$, we have

$$|f_\lambda(x(\lambda))|_v > \delta_1 |x(\lambda)|_v^s$$

for all $\lambda \in V_{L_3} \setminus \{\eta\}$.

Proof. Let the Laurent series expansion in x^{-1} of $f_\lambda(x)$ be as follows

$$f_\lambda(x) = \frac{P_\lambda(x)}{Q_\lambda(x)} = \sum_{k \geq 0} \alpha_k x^{s-k}$$
where \(\alpha_k \in A \) and \(\alpha_0(\lambda) = c_{P,0}/c_{Q,0} \in K^* \). We estimate next \(|\alpha_k(\lambda)|_v \) for \(\lambda \in V_{L_2} \setminus \{ \eta \} \) as \(k \) varies. For this we write \(x^{d Q} Q_\lambda(x)^{-1} = \sum_{j \geq 0} \beta_j x^{-j} \in A[[x^{-1}]] \) and we claim that there exist positive real numbers \(C_5 \) and \(C_6 \) such that

\[
|\beta_j(\lambda)|_v \leq C_5 (C_6 |z(\lambda)|_v^{m_2})^j.
\]

Indeed, (6.2.1) follows from the fact that \(\beta_0 = 1/c_{Q,0} \) while for each \(j \geq 1 \) we have

\[
-c_{Q,0} \beta_j = \sum_{\substack{i_1 + i_2 = j \leq d_Q \leq d_P \beta_i \leq j-1}} C_{Q,i_1} \beta_{i_2}.
\]

So, using that \(|c_{Q,i}|_v = O \left(\left(|z(\lambda)|_v^{m_2} \right) \right) \), an easy induction finishes the proof of (6.2.1). On the other hand, we have

\[
\alpha_k(\lambda) = \sum_{\substack{i_1 + i_2 = k \leq d_P \leq d_Q \beta_i \leq 0}} \beta_{i_2}(\lambda)c_{P,i_1}(\lambda).
\]

In particular, \(\alpha_0 = c_{P,0}/c_{Q,0} \). Using (6.2.1) coupled with the fact that \(|c_{P,i}(\lambda)|_v = O \left(\left(|z(\lambda)|_v^{m_1} \right) \right) \) we get that there exist positive real numbers \(C_7 \) and \(C_8 \) (independent of \(k \)) such that

\[
|\alpha_k(\lambda)|_v \leq C_7 \left(C_8 |z(\lambda)|_v^{m_1 + m_2} \right) \text{ for all } k.
\]

Since \(|c(\lambda)|_v \geq \delta_v |z(\lambda)|_v^{d_e} \) and \(d_e > m = m_1 + m_2 \) we obtain that for sufficiently large \(|z(\lambda)|_v \) we have \(\max\{|\alpha_k(\lambda)c(\lambda)^{-1}|_v : k \in \mathbb{N} \} < |\alpha_0|_v/2 \) and furthermore if \(v \) is archimedean, then \(\sum_{k \geq 1} |\alpha_k(\lambda)c(\lambda)^{-1}|_v^2 \) is convergent and bounded above by \(|\alpha_0|_v^2/4 \).

We let \(L_3 > L_2 \) be a sufficiently large real number such that for \(|z(\lambda)|_v > L_3 \) we have

\[
\sum_{k \geq 1} |\alpha_k(\lambda)c(\lambda)^{-1}|_v^2 < |\alpha_0|_v^2/4 \text{ if } v \text{ is archimedean,}
\]

and

\[
\max\{|\alpha_k(\lambda)c(\lambda)^{-1}|_v : k \geq 1\} < \frac{|\alpha_0|_v}{2} \text{ if } v \text{ is non-archimedean.}
\]

Now let \(\lambda \in V_{L_3} \setminus \{ \eta \} \) and \(x \in F \) such that \(|x(\lambda)/c(\lambda)|_v > 2 \). Write

\[
\sum_{k \geq 1} \alpha_k(\lambda)x(\lambda)^{-k} = \sum_{k \geq 1} \alpha_k(\lambda)c(\lambda)^{-k} \left(\frac{x(\lambda)}{c(\lambda)} \right)^{-k}.
\]

If \(v \) is non-archimedean, then we have

\[
\left| \sum_{k \geq 1} \alpha_k(\lambda)x(\lambda)^{-k} \right|_v \leq \max \left\{ \left| \alpha_k(\lambda)c(\lambda)^{-k} \left(\frac{x(\lambda)}{c(\lambda)} \right)^{-k} \right|_v : k \geq 1 \right\} \leq \frac{|\alpha_0|_v}{2}.
\]

Therefore,

\[
\left| \frac{f_\lambda(x(\lambda))}{x(\lambda)^s} \right|_v = \left| \alpha_0 + \sum_{k \geq 1} \alpha_k(\lambda)x(\lambda)^{-k} \right|_v = |\alpha_0|_v \geq \delta_1.
\]
Now assume \(v \) is archimedean. By the choice of \(L_3 \), the two sequences of complex numbers \((\alpha_k(\lambda)c(\lambda)^{-k})_{k \geq 1}\) and \((x(\lambda)/c(\lambda))^{-k})_{k \geq 1}\) are both square summable for each \(\lambda \in V_{L_3} \setminus \{\eta\} \). Hence, by the Cauchy-Schwartz inequality we see that

\[
\left| \sum_{k \geq 1} \alpha_k(\lambda)c(\lambda)^{-k} \left(\frac{x(\lambda)}{c(\lambda)} \right)^{-k} \right|_v \leq \left(\sum_{k \geq 1} \left| \alpha_k(\lambda)c(\lambda)^{-k} \right|_v^{-2} \right)^{1/2} \left(\sum_{k \geq 1} \left| x(\lambda)/c(\lambda) \right|_v^{-2k} \right)^{1/2} \leq \frac{|a_0|^2}{4} \left(\sum_{k \geq 1} \frac{1}{4^k} \right) \leq \frac{|a_0|^2}{4}.
\]

Hence,

\[
\left| f_\lambda(x(\lambda)) \right|_v \geq \left| a_0 \right|_v - \frac{|a_0|^2}{4} \geq \frac{|a_0|_v}{2}.
\]

In both cases, we have shown that for all \(\lambda \in V_{L_3} \) we have \(|f_\lambda(x(\lambda))|_v \geq \delta_1|x(\lambda)|^s_v \) as desired. \(\square \)

Proposition 6.3. There exists a number \(L_3 \geq L_1 \) depending only on the coefficients of \(P_\lambda, Q_\lambda \) (and on \(L_1 \)) such that for all \(n \in \mathbb{N} \) and all \(\lambda \in V_{L_3} \setminus \{\eta\} \) we have

\[
(6.3.1) \quad |f_\lambda^n(c(\lambda))|_v \geq \delta_1^{(s^n-1)/(s-1)}|c(\lambda)|_v^{s^n} \geq \delta_1^{(s^{n+1}-1)/(s-1)}|z(\lambda)|_v^{d_{s^n}}.
\]

Proof. Firstly, we note that if \(|z(\lambda)|_v > L_3 \geq L_1 \), then \(6.1.2 \) yields the second inequality from \(6.3.1 \). So, we are left to prove the first inequality in \(6.3.1 \).

We claim that there exists a real number \(L_2 \) larger than \(L_1 \) which also satisfies the following properties:

(a) if \(\lambda \in V_{L_2} \setminus \{\eta\} \), then \(\delta_1|c(\lambda)|_v^{s^{-1}} > 2 \).
(b) if \(\lambda \in V_{L_2} \setminus \{\eta\} \), then \(|f_\lambda(c(\lambda))|_v \geq \delta_1|c(\lambda)|_v^{s^n} \).

We can obtain inequality (a) above since if \(|z(\lambda)|_v > L_2 \geq L_1 \), then

\[
(6.3.2) \quad |c(\lambda)|_v \geq \delta_1 |z(\lambda)|_v^{d_{s^n}} > \delta_1 L_2^{d_{s^n}},
\]

and thus if \(L_2 > \left(\frac{2}{\delta_1} \right)^{1/d_{s^n}(s-1)} \), inequality (a) is satisfied. In order to obtain inequality (b), using \(6.3.2 \), it suffices to choose \(L_2 \) satisfying the inequality \(\delta_1 L_2^{d_{s^n}} > L_1 \) (or equivalently, \(L_2 > (L_1/\delta_1)^{1/d_{s^n}} \)). Then we may employ \(6.1.1 \) and obtain inequality (b) above.

We let \(L_3 \geq L_2 \) be the real number satisfying the conclusion of Lemma 6.2. Let \(\lambda \in V_{L_3} \setminus \{\eta\} \). The proof of the first inequality in the conclusion of Proposition 6.3 is by induction on \(n \geq 1 \). The inequality \(6.3.1 \) for \(n = 1 \) is precisely inequality (b) above.

Next we prove the inductive step; so we assume \(6.3.1 \) holds for some \(n \geq 1 \) and we will prove that

\[
|f_\lambda^{n+1}(c(\lambda))|_v \geq \delta_1^{(s^{n+1}-1)/(s-1)}|c(\lambda)|_v^{s^{n+1}}.
\]

By induction hypothesis, we know that

\[
|f_\lambda^n(c(\lambda))|_v \geq \delta_1^{(s^n-1)/(s-1)}|c(\lambda)|_v^{s^n} \geq \delta_1^{(s^{n+1}-1)/(s-1)}|z(\lambda)|_v^{d_{s^n}}.
\]
We shall apply Lemma 6.2 to \(x(\lambda) = f^n_\lambda(c(\lambda)) \). In order to do this we need to check that

\[(6.3.3) \quad |f^n_\lambda(c(\lambda))/c(\lambda)|_v^s > 2 \text{ if } \lambda \in V_{L_2} \setminus \{\eta\}.\]

Indeed, we notice that

\[|f^n_\lambda(c(\lambda))/c(\lambda)|_v^s \geq \delta_1^{(s^n-1)/(s-1)}|c(\lambda)|_v^{s-1} \text{ by the inductive hypothesis} \]

\[\geq \delta_1 |c(\lambda)|_v^{s-1} \]

\[\geq 2^{(s^n-1)/(s-1)} \text{ by inequality (a) above} \]

\[\geq 2 \quad \text{since } s \geq 2. \]

Now, by Lemma 6.2 applied to \(x(\lambda) = f^n_\lambda(c(\lambda)) \), we have

\[|f^{n+1}_\lambda(c(\lambda))|_v = |f_\lambda(f^n_\lambda(c(\lambda)))|_v \geq \delta_1 |f^n_\lambda(c(\lambda))|_v^s \text{ by Lemma 6.2} \]

\[\geq \delta_1 \left(\delta_1^{(s^n-1)/(s-1)}|c(\lambda)|_v^{s-1}\right)^s \quad \text{by induction hypothesis,} \]

\[= \delta_1^{(s^{n+1}-1)/(s-1)}|c(\lambda)|_v^{s^{n+1}}. \]

This concludes the inductive step and the proof of Proposition 6.3. \(\square \)

Proposition 6.4. There exist real numbers \(L_4 \geq 1, C_9 > 0 \) and \(C_{10} > 0 \) such that for all \(\lambda \in V_{L_2} \setminus \{\eta\} \), we have

\[C_9 M_n(\lambda)^d \leq M_{n+1}(\lambda) \leq C_{10} M_n(\lambda)^d, \]

for all \(n \in \mathbb{N} \).

Proof. We let \(L_3 \) be defined as in Proposition 6.3 and let \(L_5 \geq L_3 \) satisfy also the inequality

\[(6.4.1) \quad \delta_1^{s+1} L_5^{d_\lambda s} > L_5^{d_\lambda}, \]

or equivalently \(L_5 > \delta_1^{-(s+1)/(d_\lambda(s-1))} \).

We first claim that \(L_5 \) satisfies the following inequality:

\[(6.4.2) \quad \delta_1^{(s^{n+1}-1)/(s-1)} L_5^{d_\lambda s^n} > L_5^{d_\lambda} \quad \text{for all } n \in \mathbb{N}. \]

Indeed, for \(n = 1 \), (6.4.2) follows from the choice of \(L_5 \) (see inequality (6.4.1) above).

Now, assume that \(n \geq 1 \) and (6.4.2) holds for \(n \). Now,

\[\delta_1^{(s^{n+2}-1)/(s-1)} L_5^{d_\lambda s^{n+1}} = \delta_1^{(s^{n+1}-1)/(s-1)} (\delta_1^{s_\lambda} L_5^{d_\lambda s^n}) \]

\[> \delta_1^{(s^{n+1}-1)/(s-1)} (\delta_1^{s_\lambda} L_5^{d_\lambda s^n}) \quad \text{since } \delta_1 < 1 \]

\[\geq \delta_1^{(s^{n+1}-1)/(s-1)} (L_5^{d_\lambda})^{s^n} \quad \text{by (6.4.1)} \]

\[> L_5^{d_\lambda} \quad \text{by assumption.} \]

Hence, by induction we finish the proof of the claim.

If \(\lambda \in V_{L_5} \setminus \{\eta\} \), then by Proposition 6.3 and inequality (6.4.2), we have

\[|f^n_\lambda(c(\lambda))|_v \geq \delta_1^{(s^{n+1}-1)/(s-1)} |z(\lambda)|_v^{d_\lambda s^n}\]

\[\geq \delta_1^{(s^{n+1}-1)/(s-1)} L_5^{d_\lambda s^n}\]

\[\geq L_5^{d_\lambda} \geq 1, \]
which means that $M_n(\lambda) = |A_{e,n}(\lambda)|_v$. So,

$$M_{n+1}(\lambda) = |A_{e,n+1}(\lambda)|_v$$

$$= |A_{e,n}(\lambda)^{d_P}|_v \cdot \left| P_\lambda \left(1, \frac{B_{e,n}(\lambda)}{A_{e,n}(\lambda)} \right) \right|_v$$

$$= M_n(\lambda)^{d}\cdot \left| P_\lambda \left(1, \frac{1}{f_N^c(c(\lambda))} \right) \right|_v \text{ since } d_P = d$$

$$= M_n(\lambda)^{d}\cdot \left| c_{P,0} + \sum_{i=1}^{d_P} \frac{c_i(\lambda)}{f_N^c(c(\lambda))}^i \right|_v$$

$$= M_n(\lambda)^{d}\cdot \left| c_{P,0} + \sum_{i=1}^{d_P} \frac{c_i(\lambda)}{f_N^c(c(\lambda))}^i \right|_v .$$

Since we have $|f_N^c(c(\lambda))/c(\lambda)|_v > 2$ whenever $\lambda \in V_{L_5} \setminus \{\eta\} \subset V_{L_2} \setminus \{\eta\}$ by (6.3.3), we obtain

$$\left| \sum_{i=1}^{d_P} \left(\frac{c_i(\lambda)}{c(\lambda)^i} \right)^i \right|_v \leq \left(\sum_{i=1}^{d_P} \left| \frac{c_i(\lambda)}{c(\lambda)^i} \right|_v \right)^i .$$

Because $d_c > \deg(c_i)/i$ we have

$$\left| \frac{c_i(\lambda)}{c(\lambda)^i} \right|_v \to 0 \text{ as } \lambda \to \eta \text{ v-adically;}$$

so, there exists $L_4 \geq L_5$ such that for $\lambda \in V_{L_4} \setminus \{\eta\}$ we have

$$|c_{P,0}|_v \leq \left| P_\lambda \left(1, \frac{B_{e,n}(\lambda)}{A_{e,n}(\lambda)} \right) \right|_v \leq \frac{3 |c_{P,0}|}{2} .$$

This concludes the proof of Proposition 6.4. □

7. Definition of the metrics

We begin with the following lemma that we will use throughout this section.

Lemma 7.1. Let $w : X \rightarrow \mathbb{P}^1$ be a morphism given by $w := \frac{u}{v}$ where $u, v \in A$ such that $(u, v) = A$. Then the line bundle $w^*\mathcal{O}_{\mathbb{P}^1}(1)$ is linearly equivalent to a multiple of η. Furthermore, if $\deg(u) > \deg(v)$, then $w^*\mathcal{O}_{\mathbb{P}^1}(1)$ is linearly equivalent to $\deg(u)\eta$.

Proof. We have that $w^*\mathcal{O}_{\mathbb{P}^1}(1)$ equals

$$d_w\eta + \sum_i n_i P_i,$$

where (P_i, n_i) are the zeros P_i with corresponding multiplicities n_i of v. Note that $d_w = (\deg(u) - \deg(v)) > 0$ if and only if the order of the pole of u at η is larger than the order of the pole of v at η. On the other hand, v is itself a map from X to \mathbb{P}^1, so $\sum_i n_i P_i$ is linearly equivalent to $\deg(v)\eta$. Thus, $w^*\mathcal{O}_{\mathbb{P}^1}(1)$ is linearly equivalent with $(d_w + \deg(v))\eta = \deg(u)\eta$, as desired. □

Now, let $v \in \Omega_K$ be any place of K. We put a family of metrics $\| \cdot \|_{v,n}$ on $c^*\mathcal{O}_{\mathbb{P}^1}(1)$ for every positive integer n as follows. Since $c^*\mathcal{O}_{\mathbb{P}^1}(1)$ is generated by pull-backs of global sections of $\mathcal{O}_{\mathbb{P}^1}(1)$, it suffices to describe the metric for sections
of the form \(z = c^* (u_0 t_0 + u_1 t_1) \) where \(t_0 \) and \(t_1 \) are the usual coordinate functions on \(\mathbb{P}^1 \) and \(u_0, u_1 \) are scalars. For a point \(\lambda \in Y(C_v) \), we then define for each \(n \in \mathbb{N} \)

\[
\|z\|_{v,n}(\lambda) := \frac{|u_0 a(\lambda) + u_1 b(\lambda)|_v}{\max(|A_{c,n}(\lambda)|_v, |B_{c,n}(\lambda)|_v)^{1/d^n}} \text{ if } v \text{ is nonarchimedean}
\]

and

\[
\|z\|_{v,n}(\lambda) := \frac{|u_0 a(\lambda) + u_1 b(\lambda)|_v}{(|A_{c,n}(\lambda)|_v^2 + |B_{c,n}(\lambda)|_v^2)^{1/(2d^n)}} \text{ if } v \text{ is archimedean}.
\]

(Recall that \(\deg(A_{c,n}) = d_a d^n > \deg(B_{c,n}) \).) Furthermore, we define

\[
\|z\|_{v,n}(\eta) = \lim_{\lambda \to \eta} \|z\|_{v,n}(\lambda) = \frac{|u_0|_v}{\sqrt{|c_{P,0}|^{d^n-1}(d^{n+1} - d^n)}}.
\]

(Note that the leading coefficient of \(A_{c,n} \) is \(c_{P,0}^{(d^n-1)/(d-1)} c_d^{d^n} \) according to Proposition [5.1].)

One arrives at (7.1.1) and (7.1.2) as follows. Let \(\Phi_{c,n} : X \to \mathbb{P}^1 \) be defined by \(\Phi_{c,n}(\lambda) = [A_{c,n}(\lambda) : B_{c,n}(\lambda)] \) for \(\lambda \neq \eta \) and \(\Phi_{c,n}(\eta) = \infty \). Then, since \(A_{c,n} \) has a higher order pole at \(\eta \) than \(B_{c,n} \), we see that \(\Phi_{c,n} \) sends \(\eta \) to \([1 : 0]\). By Lemma 7.1 we see then that \((c^* \mathcal{O}_{\mathbb{P}^1}(1))^{d^n} \) is isomorphic to \(\Phi_{c,n}^* \mathcal{O}_{\mathbb{P}^1}(1) \). Thus, \(c^* t_0^{d^n} \) and \(c^* t_1^{d^n} \) are both sections of \(\Phi_{c,n}^* \mathcal{O}_{\mathbb{P}^1}(1) \). Note that \(c^* t_0^{d^n} \) and \(c^* t_1^{d^n} \) have no common zero since \(t_0 \) and \(t_1 \) have no common zero; hence they generate \(\Phi_{c,n}^* \mathcal{O}_{\mathbb{P}^1}(1) \) as a line bundle. Likewise, \(\Phi_{c,n}^* t_0 \) and \(\Phi_{c,n}^* t_1 \) have no common zero and thus generate \(\Phi_{c,n}^* \mathcal{O}_{\mathbb{P}^1}(1) \) as a line bundle. Thus (by 17, Section II.6, for example), we have an isomorphism \(\tau : (c^* \mathcal{O}_{\mathbb{P}^1}(1))^{d^n} \to \Phi_{c,n}^* \mathcal{O}_{\mathbb{P}^1}(1) \), given by \(\tau : c^* t_0^{d^n} \mapsto \Phi_{c,n}^* t_0 \) and \(\tau : c^* t_1^{d^n} \mapsto \Phi_{c,n}^* t_1 \). Now, for each place \(v \), let \(\| \cdot \|_v \) be the metric on \(\mathcal{O}_{\mathbb{P}^1}(1) \) given by

\[
\|(u_0 t_0 + u_1 t_1)|_v((a : b)) = \frac{|u_0 a + u_1 b|_v}{\max(|a|_v, |b|_v)} \text{ if } v \text{ is nonarchimedean}
\]

and

\[
\|(u_0 t_0 + u_1 t_1)|_v((a : b)) = \frac{|u_0 a + u_1 b|_v}{\sqrt{|a|^2 + |b|^2}} \text{ if } v \text{ is archimedean}
\]

(this is the Fubini-Study metric). Then \(\| \cdot \|_v, n \) is simply the \(d^n \)-th root of \(\tau^* \Phi_{c,n}^* \| \cdot \|_v \). In particular, the adelic metrized line bundle \(\mathcal{L}_n \) given by \(c^* \mathcal{O}_{\mathbb{P}^1}(1) \) with the metrics \(\| \cdot \|_v \) is isomorphic to a power of the pullback of a semipositive metrized line bundle, so it is therefore itself semipositive (see 31, Section 2]).

Remark 7.2. We also note that for any given model \(X \) for \(\mathcal{X} \) over the ring of integers \(\mathcal{O}_K \) of \(K \), there exists a finite subset \(S \) of places of \(K \) depending on \(X, \mathcal{X} \), and \(f \) such that \(\Phi_{c,n} \) extends to a morphism from \(\mathcal{X} \) to \(\mathbb{P}^1 \) over the ring of \(S \)-integers \(\mathcal{O}_S \) of \(K \) for all \(n \). From this we conclude that the family of metrics \(\| \cdot \|_v \) are the same for all \(n \) and all \(v \notin S \). More precisely, we note that \(\Phi_{c,n} \) has good reduction for all nonarchimedean primes which do not divide the (constant) resultant of the family \(f_1 \) and also do not divide the leading coefficients of both \(P \) and \(a \). In particular this proves that for each such place \(v \) of good reduction, for each \(\lambda \in Y \) and for each integer \(n \), we have

\[
\max(|A_{c,n}(\lambda)|_v, |B_{c,n}(\lambda)|_v)^{d^n}.
\]
Indeed, if $|a(\lambda)|_v \leq |b(\lambda)|_v$, then dividing equations (5.0.9) and (5.0.10) by $|b(\lambda)|^{d_n}$ and using the fact that $c(\lambda)$ is integral at v while $\Phi_{c,n}$ has good reduction at v we conclude that

$$\max \left\{ \frac{|A_{c,n}(\lambda)|_v}{|b(\lambda)|^{d_n}}, \frac{|B_{c,n}(\lambda)|_v}{|b(\lambda)|^{d_n}} \right\} = 1.$$

Similarly, if $|a(\lambda)|_v > |b(\lambda)|_v$, then $|c(\lambda)|_v > 1$ and since v is a place of good reduction for $\Phi_{c,n}$ we obtain that $|A_{c,n}(\lambda)|_v = |a(\lambda)|^{d_n} > |B_{c,n}(\lambda)|_v$. In conclusion,

$$\max \{ |A_{c,n}(\lambda)|_v, |B_{c,n}(\lambda)|_v \} = \max \{ |a(\lambda)|_v, |b(\lambda)|_v \}^{d_n},$$

as claimed. Now, let S be set of archimedean places along with the nonarchimedean places v which divide the leading coefficient of a or P or divide the constant resultant of the family f_λ. Then

$$\| \cdot \|_{v,n} = \| \cdot \|_{v,0} \text{ for all } v \notin S \text{ and all positive integers } n$$

Proposition 7.3. For any $v \in \Omega_K$ the sequence of metrics $\| \cdot \|_{v,n}$ defined above converges uniformly on $X(C_v)$.

Proof. If $\lambda = \eta$, the convergence is clear. For each $\lambda \in Y(C_v)$ we denote by

$$h_{v,n}(\lambda) := \max \{ |A_{c,n}(\lambda)|_v, |B_{c,n}(\lambda)|_v \} \text{ if } v \text{ is nonarchimedean, and}$$

$$h_{v,m}(\lambda) := \sqrt{\frac{|A_{c,n}(\lambda)|_v^2 + |B_{c,n}(\lambda)|_v^2}{c_{v,m}(\lambda)}},$$

if v is archimedean.

Then, for a section of the form $z = \gamma(u_0t_0 + u_1t_1)$ we have

$$\|z\|_{v,n}(\lambda) = \frac{|u_0a(\lambda) + u_1b(\lambda)|_v}{h_{v,n}(\lambda)^{1/n}}.$$

To show that $\log \| \cdot \|_{v,n}$ converge uniformly it suffice to show that $\frac{\log h_{v,n}(\lambda)}{d_n}$ converge uniformly for $\lambda \in Y(C_v)$.

Propositions 6.1 and 6.4 show that there exist positive real numbers C_9 and C_{10} such that for all $n \geq 0$, we have

$$(7.3.1) \quad C_9h_{v,n}(\lambda)^d \leq h_{v,n+1}(\lambda) \leq C_{10}h_{v,n}(\lambda)^d.$$

In establishing inequality (7.3.1) at archimedean places v, we used the fact that

$$(7.3.2) \quad \max \{ |A_{c,n}(\lambda)|_v, |B_{c,n}(\lambda)|_v \} \leq C_{11}h_{v,n}(\lambda)^{d_n}$$

for all $n \in \mathbb{N}$. Taking logarithms in (7.3.1) and dividing by d_n^{n+1} yields

$$\left| \frac{1}{d^{n+1}} \log h_{v,n+1}(\lambda) - \frac{1}{d^n} \log h_{v,n}(\lambda) \right| \leq C_{11}/d^{n+1}$$

for some positive constant C_{11}. Thus, by the usual telescoping series argument, we have

$$\left| \frac{1}{d^m} \log h_{v,m}(\lambda) - \frac{1}{d^n} \log h_{v,n}(\lambda) \right| \leq \frac{C_{11}}{d^n} \sum_{i=0}^{\infty} (1/d^i) = \frac{C_{11}}{d^n(1 - 1/d)}$$

for any $m > n$. Since $\frac{C_{11}}{d^n(1 - 1/d)}$ can be made arbitrarily small by choosing n large, this gives uniform convergence for all $\lambda \in Y(C_v)$.

\qed
For each \(v \in \Omega_K\), we let \(\| \cdot \|_v\) denote the limit of the family of metrics \(\| \cdot \|_{v,n}\). Proposition \(7.3\) shows that the adelic metrized line bundle \(L = (c^*\mathcal{O}_X(1), \{\| \cdot \|_v\}_{v \in \Omega_K})\) is semi-positive. Let \(\lambda \in X(K)\) and choose a meromorphic section \(s\) of \(L\) whose support is disjoint from the Galois conjugates \(\lambda^{[1]}, \ldots, \lambda^{[\ell]}\) of \(\lambda\) over \(K\). Furthermore, Lemma \(7.1\) says that the line bundle \(c^*\mathcal{O}_X(1)\) is isomorphic to \(L^{\otimes d_A}\) where \(L_\eta\) is the line bundle determined by the divisor class containing \(\eta\). As in Section \(3\) we put

\[
(7.3.3) \quad h_c(\lambda) := \frac{1}{da} \sum_{v \in \Omega_K} N_v \sum_{i=1}^\ell - \log s(\lambda^{(i)}) \|_v.
\]

Consequently, \(h_c = h_{L_\eta}\) is a height function associated to the metrized line bundle \(L_\eta\) that corresponds to the divisor class containing \(\eta\). Now we are ready to give a proof of Theorem \(5.4\).

Proof of Theorem \(5.4\). Recall that we are given \(f(x) = P(x)/Q(x)\) of degree \(d \geq 2\) over \(F\) and a point \(c \in F\) such that the sequence \(\{\deg f^n(c)\}_{n \geq 0}\) is unbounded. Note that \(f\) satisfies the conditions that the resultant \(R(f) \in K^*\) and \(d_P \geq d_Q + 2\) (equivalently, the point \(x = \infty\) is a superattracting fixed point for \(f\)).

The first step is to compute the canonical height \(\hat{h}_f(c)\) of \(c \in \mathbb{P}^1(F)\) associated to the given morphism \(f\) over \(F = K(X)\). We note that \(F\) is a product formula field and moreover the set of places \(\Omega_F\) is in one to one correspondence with the set of closed points of \(X\) over \(K\). Let \(e_n = \max\{\deg A_{c,n}, \deg B_{c,n}\}\). Then,

\[
\hat{h}_f(c) = \lim_{n \to \infty} \frac{1}{d^n} \sum_{P \in X} \deg(P) \max\{-\text{ord}_P(A_{c,n}), -\text{ord}_P(B_{c,n})\}
\]

\[
= \lim_{n \to \infty} \frac{1}{d^n} \max\{\deg(A_{c,n}), \deg(B_{c,n})\} \quad \text{since } (A_{c,n}, B_{c,n}) = A
\]

\[
= \lim_{n \to \infty} \frac{e_n}{d^n}
\]

where in the sum \(P\) runs over all closed point of \(X\) and \(\deg(P)\) denote the degree of \(P\) over \(K\). Now we put \(g(\lambda) := \hat{h}_f(c(\lambda))/\hat{h}_f(c)\) which gives a function on \(Y(K)\). We claim that \(g(\lambda) = h_c(\lambda)\) for all \(\lambda\). Since \(h_c\) is a height function associated to the divisor class containing \(\eta\), Theorem \(5.4\) will follow from the claim.

To prove the claim, we first observe that \(g(\lambda)\) is independent of the choice of the point in the orbit \(\mathcal{O}_f(c) = \{f^n(c)\}_{n \geq 0}\). This can be seen as follows: for each \(n \geq 0\)

\[
\frac{\hat{h}_f(f^n(c(\lambda)))}{\hat{h}_f(f^n(c))} = \frac{d^n \hat{h}_f(c(\lambda))}{d^n \hat{h}_f(c)} = g(\lambda).
\]

In the following, we choose \(n\) large enough so that \(\deg(f^n(c)) > m\) where \(m = m_1 + m_2\) as defined in \(5.0.7\). This is possible as \(\deg(f^n(c)) \to \infty\) when \(n \to \infty\). Replacing \(c\) by \(f^n(c)\) if necessary, we may assume that \(c\) satisfies \(d_c = \deg(c) > m\). Then, according to Proposition \(5.1\) we have \(e_n = \max\{\deg A_{c,n}, \deg B_{c,n}\} = d_d d^n\).

Hence, \(\hat{h}_f(c) = e_n/d^n = d_A\). Let \(\lambda^{[1]}, \ldots, \lambda^{[\ell]}\) be the Galois conjugates of \(\lambda\) over \(K\) and let \(s\) be a section of \(c^*\mathcal{O}_X(1)\) whose support is disjoint from \(\lambda^{[1]}, \ldots, \lambda^{[\ell]}\). Now
we compute

\[d_{a}h_{c}(\lambda) = \sum_{v \in \Omega_{K}} \frac{N_{v}}{\ell} \sum_{i=1}^{\ell} - \log s(\lambda^{[i]}) v\]

\[= \sum_{v \in \Omega_{K}} \frac{N_{v}}{\ell} \sum_{i=1}^{\ell} \lim_{n \to \infty} \log \max\{|A_{c,n}(\lambda^{[i]})|_{v},|B_{c,n}(\lambda^{[i]})|_{v}\} - \log |s(\lambda^{[i]})|_{v}\]

\[= \sum_{v \in \Omega_{K}} \frac{N_{v}}{\ell} \sum_{i=1}^{\ell} \lim_{n \to \infty} \log \max\{|A_{c,n}(\lambda^{[i]})|_{v},|B_{c,n}(\lambda^{[i]})|_{v}\} \text{ by the product formula,}\]

\[= \hat{h}_{f_{\chi}}(c(\lambda)) \text{ see [20] Theorem 5.59}\]

\[= \hat{h}_{f}(c)g(\lambda) \text{ by the definition of } g(\lambda).\]

As remarked above, we have \(\hat{h}_{f}(c) = d_{a}\). It follows that \(g(\lambda) = h_{c}(\lambda)\) and the proof of Theorem 5.4 is completed. \(\square\)

8. Preperiodic points for families of dynamical systems

We are ready to prove our main results.

Proof of Theorem 2.2 We let \(K\) be a number field such that \(f_{1}\) and also \(c_{1}\) are defined over \(K\) (for \(i = 1, 2\)). Let \(h_{c_{i}}(\lambda) := \hat{h}_{f_{1}}(c_{1})/\hat{h}_{f}(c)\) be the height function defined as in Section 4 for \(i = 1, 2\). As in the proof of Theorem 5.4 \(h_{c_{i}} = h_{T_{\eta,i}}\) is the height function associated to the adelic metrized line bundle \(T_{\eta,i} = (L_{\eta}, \{\|\cdot\|_{v,i}\})\) where for any \(v \in \Omega_{K}\), the metric \(\{\|\cdot\|_{v,i}\}\) denotes the limits of the metrics constructed in \((7.4.1)\) and \((7.4.2)\) corresponding to \(c_{1}\) and respectively \(c_{2}\).

Our hypothesis and Proposition 7.3 allow us to use Corollary 4.3 and therefore conclude the equality of the two metrics. That is,

\[\frac{\hat{h}_{f_{\chi,1}}(c_{1}(\lambda))}{\hat{h}_{f}(c_{1})} = \frac{\hat{h}_{f_{\chi,2}}(c_{1}(\lambda))}{\hat{h}_{f}(c_{2})}.\]

Therefore, we have

\[\hat{h}_{f_{\chi,i}}(c_{1}(\lambda)) = 0 \text{ if and only if } \hat{h}_{f_{\chi,i}}(c_{1}(\lambda)) = 0.\]

This concludes the proof of Theorem 2.2. \(\square\)

The following results are easy consequences of Theorem 2.2.

Corollary 8.1. Let \(c_{1}\) and \(f_{\lambda,i}\) be as in Theorem 2.2 for \(i = 1, 2\). Then for each \(\lambda \in \overline{\mathbb{Q}}\), \(c_{1}(\lambda)\) is preperiodic for \(f_{\lambda,1}\) if and only if \(c_{2}(\lambda)\) is preperiodic for \(f_{\lambda,2}\).

Proof. Since \(\hat{h}_{f_{\chi,i}}(x) = 0\) if and only if \(x\) is preperiodic for \(f_{\lambda,i}\) (because \(f_{\lambda,i} \in \overline{\mathbb{Q}}(x)\)), the conclusion is immediate. \(\square\)

Proof of Theorem 7.3. We let \(c_{1} = \frac{\eta}{x}\) and \(c_{2} = \frac{b}{x}\); by our assumption, \(c_{i}\) is a quotient of two functions in \(A\) (which generate \(A\)), and also \(\text{deg}(f^{n}(c_{i}))\) is unbounded as \(n \to \infty\). Since \(P_{i}, Q_{i} \in \overline{\mathbb{Q}}[x]\) and also \(a, b \in \overline{\mathbb{Q}}\), Corollary 5.3 yields that if \(a\) (or \(b\)) is preperiodic under \(f_{\lambda}\) (or \(g_{\lambda}\)), then \(\lambda \in \overline{\mathbb{Q}}\). Note that \(f_{\lambda}, g_{\lambda}, c_{1}(\lambda)\) and \(c_{2}(\lambda)\) satisfy the hypothesis of Theorem 2.2. Using Corollary 8.1 we obtain that \(a\) is preperiodic under the action of \(f_{\lambda}\) if and only if \(b\) is preperiodic under the action of \(g_{\lambda}\). \(\square\)
The following Corollary generalizes Theorem 1.1 and its proof is identical with the proof of Theorem 1.1.

Corollary 8.2. Let $P_i, Q_i, R_i \in \mathbb{Q}[x]$ be nonzero polynomials such that $\deg(P_i) \geq \deg(Q_i) + \deg(R_i) + 2$, and let $a, b \in \mathbb{Q}$ such that $Q_1(a), R_1(a), Q_2(b)$ and $R_2(b)$ are all nonzero. Let C be a projective nonsingular curve defined over \mathbb{Q}, let $\eta \in C(\mathbb{Q})$ and let A be the ring of functions on C regular on $C \setminus \{\eta\}$. Let $\Phi, \Psi \in A$ be nonconstant functions. If there exist infinitely many $\lambda \in C(\mathbb{Q})$ such that both a and b are preperiodic under the action of $\Phi_\lambda(x) = P_1(x)/Q_1(x) + \Phi(\lambda) \cdot R_1(x)$ and respectively of $g_\lambda(x) = P_2(x)/Q_2(x) + \Psi(\lambda) \cdot R_2(x)$, then for all $\lambda \in C(\mathbb{C})$, a is preperiodic for Φ_λ if and only if b is preperiodic for g_λ.

Proof of Corollary 8.2. By our assumption on the degrees of P_i, Q_i, R_i, g_i for $i = 1, 2$ we conclude that the conditions in Theorem 2.2 are satisfied for $f_\lambda(x) := P_i(x)/Q_i(x) + \lambda R_i(x)$, and $c_i(\lambda) = g_i(\lambda) + c_i$ for $i = 1, 2$. Assume there exist infinitely many $\lambda \in \mathbb{Q}$ such that $g_i(\lambda) + c_i$ is preperiodic under the action of $f_\lambda(x)$ for $i = 1, 2$. Using Corollary 5.1 we obtain that $g_1(\lambda) + c_1$ is preperiodic under the action of $f_{\lambda,1}$ if and only if $g_2(\lambda) + c_2$ is preperiodic under the action of $f_{\lambda,2}$. However, $c_1 = g_1(0) + c_1$ is preperiodic under $f_{\lambda,1}(x) = P_1(x)/Q_1(x)$, while $c_2 = g_2(0) + c_2$ is not preperiodic under $f_{\lambda,2}(x) = P_2(x)/Q_2(x)$. This contradiction proves that indeed there exist at most finitely many $\lambda \in \mathbb{Q}$ such that $g_i(\lambda) + c_i$ is preperiodic under the action of $f_{\lambda,i}(x)$ for $i = 1, 2$.

Finally, we prove Theorem 1.3.

Proof of Theorem 1.3. We let $\tilde{C} := C \cup \{\eta\}$ be the projective closure of C in \mathbb{P}^2, where η is the point at infinity. We let \hat{A} be the ring of functions on \tilde{C} which are regular on C. Then $f_X(z) := f(z) + X \in A[z]$ and also $g_Y(z) := g(z) + Y \in A[z]$ where X and Y are the corresponding regular functions on C, i.e., the functions giving the coordinates of any point. For any critical points c_1 and c_2 of $f(z)$, respectively of $g(z)$, we let $c_1 := \frac{X}{Y} \in A$ and $c_2 := \frac{Y}{X} \in A$. Then all hypotheses of Theorem 2.2 are satisfied. Therefore, Theorem 2.2 yields that for each $(x, y) \in C(\mathbb{C})$ we have that c_1 is preperiodic for f_x if and only if c_2 is preperiodic for g_y (note that Corollary 5.3 yields that each such (x, y) actually lives over \mathbb{Q}). Repeating the above analysis for each pair of critical points of f, respectively of g, we conclude that for each point (x, y) on C, $f(z) + x$ is PCF if and only if $g(z) + y$ is PCF.

9. Higher Dimensional Case

In this section we prove Theorem 1.4 so we continue with the notation from Theorem 1.4. By abuse of notation, we denote by $P(x)$ the polynomial $P \left(\frac{X}{Z}, 1 \right)$ for the variable $x = \frac{X}{Z}$. Similarly we denote by $Q(y)$ the polynomial $Q \left(\frac{Y}{Z}, 1 \right)$ with the variable $y = \frac{Y}{Z}$.

Let $a, b \in \mathbb{Q}$. For each $n \geq 0$ we let $A_n(\lambda, \mu), B_n(\lambda, \mu) \in \mathbb{Q}[\lambda, \mu]$ such that

$$f_{\lambda,\mu}^0([a : b : 1]) = [A_n(\lambda, \mu), B_n(\lambda, \mu) : 1].$$

More precisely, $A_0 = a$ and $B_0 = b$, while for each $n \geq 0$, we have

$$A_{n+1}(\lambda, \mu) = P(A_n(\lambda, \mu)) + \lambda B_n(\lambda, \mu)$$

and

$$B_{n+1}(\lambda, \mu) = Q(B_n(\lambda, \mu)) + \mu A_n(\lambda, \mu).$$
It is easy to check that \(\deg(A_n) = \deg(B_n) = d^{n-1} \) for all \(n \geq 1 \) (here we use the fact that \(d \geq 3 \)). In order to apply our method we consider the following metrics corresponding to any section \(u_0 t_0 + u_1 t_1 + u_2 t_2 \) (with scalars \(u_i \)) of the line bundle \(\mathcal{O}_{\mathbb{P}^2}(1) \) of \(\mathbb{P}^2 \). Using the coordinates \(\lambda = \frac{t_0}{t_2} \) and \(\mu = \frac{t_1}{t_2} \) on the affine subset of \(\mathbb{P}^2 \) corresponding to \(t_2 \neq 0 \), we get that the metrics \(s := s^{(a,b)} \) are defined as follows:

\[
\|s([t_0 : t_1 : t_2])\|_{v,n} = \begin{cases} \\
\frac{|u_0 t_0 + u_1 t_1|_v}{\sqrt{|c_P|^2(d_1 - 1)/(d - 1) |n_0|^{d_1 - 1}}} & \text{if } t_2 = 0 \\
\frac{|u_0 t_0 + u_1 t_1|_v}{\max\{|c_P|^2(d_1 - 1)/(d - 1) |n_0|^{d_1 - 1}, |c_Q|^2(d_1 - 1)/(d - 1) |n_1|^{d_1 - 1}\}} & \text{if } t_0 : t_1 : t_2 = [\lambda : \mu : 1] \\
\frac{|u_0 t_0 + u_1 t_1|_v}{\max\{|A_n(\lambda, \mu)|_v, |B_n(\lambda, \mu)|_v\}} & \text{if } t_0 : t_1 : t_2 = [\lambda : \mu : 1]
\end{cases}
\]

where \(P(X,0) = c_P X^d \) and \(Q(Y,0) = c_Q Y^d \) (with nonzero constants \(c_P \) and \(c_Q \) as assumed in Theorem 1.2). We note that if we let

\[
\tilde{A}_n(t_0, t_1, t_2) := t_2^{d_1 - 1} \cdot A_n \left(\frac{t_0}{t_2}, \frac{t_1}{t_2} \right)
\]

and

\[
\tilde{B}_n(t_0, t_1, t_2) := t_2^{d_1 - 1} \cdot B_n \left(\frac{t_0}{t_2}, \frac{t_1}{t_2} \right)
\]

then the map

\[
\theta_n : [t_0 : t_1 : t_2] \rightarrow \left[\tilde{A}_n(t_0, t_1, t_2) : \tilde{B}_n(t_0, t_1, t_2) : t_2^{d_1 - 1} \right]
\]

is an endomorphism of \(\mathbb{P}^2 \). Indeed, if \(t_2 = 0 \), we have

\[
\tilde{A}_n(t_0, t_1, 0) = c_P (d_1 - 1)/(d - 1) t_0^{d_1 - 1}
\]

and

\[
\tilde{B}_n(t_0, t_1, 0) = c_Q (d_1 - 1)/(d - 1) t_0^{d_1 - 1}
\]

which ensures that the above map is well-defined on \(\mathbb{P}^2 \). Thus, we have an isomorphism \(\tau : \mathcal{O}_{\mathbb{P}^2}(d^{n-1}) \rightarrow \theta^* \mathcal{O}_{\mathbb{P}^2}(1) \), given by \(\tau : t_2^{d_1 - 1} \mapsto \tilde{A}_n(t_0, t_1, t_2) \), \(\tau : t_2^{d_1 - 1} \mapsto \tilde{B}_n(t_0, t_1, t_2) \) and \(\tau : t_2^{d_1 - 1} \mapsto t_2^{d_1 - 1} \).

Let \(\| \cdot \|_v \) be the metric on \(\mathcal{O}_{\mathbb{P}^1}(1) \) given by

\[
\|(u_0 t_0 + u_1 t_1 + u_2 t_2)\|_v([a : b : c]) = \frac{|u_0 a + u_1 b + u_2 c|_v}{\max\{|a|_v, |b|_v, |c|_v\}} \text{ if } v \text{ is nonarchimedean}
\]

and

\[
\|(u_0 t_0 + u_1 t_1 + u_2 t_2)\|_v([a : b : c]) = \frac{|u_0 a + u_1 b + u_2 c|_v}{\sqrt{|a|_v^2 + |b|_v^2 + |c|_v^2}} \text{ if } v \text{ is archimedean}
\]

(this is the Fubini-Study metric). We see then that \(\| \cdot \|_{v,n} \) is simply the \(d^n \)-th root of \(\tau^* \theta_n^* \| \cdot \|_v \). Hence, \(\| \cdot \|_{v,n} \) is semipositive.

In order to use Corollary 4.3 we need only prove that the metrics \(\|s\|_{v,n} \) (on \(\mathcal{O}_{\mathbb{P}^2}(1) \)) converge uniformly on \(\mathbb{P}^2 \) to a metric \(\|s\|_v \) on the adelic metrized line
bundle \mathcal{L}. Then we would get that the height of each point $[\lambda : \mu : 1]$ with respect to \mathcal{L} is

$$h_{\mathcal{L}}([\lambda : \mu : 1]) = \frac{h_{\mathcal{F}_m}([a : b : 1])}{h_{\mathcal{F}}([a : b : 1])} = d \cdot h_{\mathcal{F}_m}([a : b : 1]),$$

since the canonical height of the constant point $[a : b : 1] \in \mathbb{P}^2(\overline{\mathbb{Q}}(\lambda, \mu))$ under the action of \mathbf{f} is $\frac{1}{d}$. Indeed, for each positive integer n, the height of $[A_n(\lambda, \mu) : B_n(\lambda, \mu) : 1] \in \mathbb{P}^2(\overline{\mathbb{Q}}(\lambda, \mu))$ with respect to the set of places of $\mathbb{Q}(\lambda, \mu)$ (which correspond to the irreducible divisors of \mathbb{P}^2 whose function field is identified with $\mathbb{Q}(\lambda, \mu)$) is the same as the total degree of the polynomials A_n and B_n, and thus it is d^{n-1}.

Clearly, the metrics $||s||_{v,n}$ converge uniformly on the line at infinity from \mathbb{P}^2. As before (see Propositions 9.1, 9.2 and 9.3), we will achieve our goal once we prove that

$$\frac{M_{n+1}(\lambda, \mu)}{M_n(\lambda, \mu)^d}$$

is uniformly bounded above and below,

where $M_n(\lambda, \mu) := \max\{|A_n(\lambda, \mu)|_v, |B_n(\lambda, \mu)|_v, 1\}$.

Let K be a number field containing a, b and all coefficients of both P and Q. Let $v \in \Omega_K$ be a fixed place. We first observe that there exist real numbers $L_6 > 1$ and $\delta > 0$ (depending only on v and on the coefficients of P and Q) such that for each $z \in \mathbb{C}_v$ satisfying $|z|_v \geq L_6$, we have

$$\min\{|P(z)|_v, |Q(z)|_v\} \geq \delta |z|_v^d.$$

(Here we use the fact that $\deg(P) = \deg(Q) = d$, which is equivalent with the fact that both $P(X, 0)$ and $Q(Y, 0)$ are nonzero polynomials.)

Furthermore, there exists a constant $C_{15} > 1$ (depending only on v and on the coefficients of P and Q) such that for each $z \in \mathbb{C}_v$, we have

$$\max\{|P(z)|_v, |Q(z)|_v\} \leq C_{15} \cdot \max\{1, |z|_v\}^d.$$

Lemma 9.1. Let L be any real number larger than 1. There exist positive real numbers C_{16} and C_{17} depending on v, L and on the coefficients of P and Q such that

$$C_{16} \leq \frac{M_{n+1}(\lambda, \mu)}{M_n(\lambda, \mu)^d} \leq C_{17},$$

for all $n \geq 1$ and for all $\lambda, \mu \in \mathbb{C}_v$ such that $\max\{|\lambda|_v, |\mu|_v\} \leq L$.

Proof. Clearly, by its construction, $M_n \geq 1$. Therefore, using (9.0.3) we get

$$|A_{n+1}(\lambda, \mu)|_v \leq |P(A_n(\lambda, \mu))|_v + |\lambda|_v \cdot |B_n(\lambda, \mu)|_v \leq C_{15} M_n^d + LM_n \leq M_n^d (C_{15} + L)$$

and similarly,

$$|B_{n+1}(\lambda, \mu)|_v \leq |Q(B_n(\lambda, \mu))|_v + |\mu|_v \cdot |A_n(\lambda, \mu)|_v \leq M_n^d \cdot (C_{15} + L).$$

This proves the existence of the upper bound C_{17} as in the conclusion of Lemma 9.1.

For the proof of the existence of the lower bound C_{16}, we let $L_7 \geq L_6$ be a real number satisfying

$$L_7^{d-1} > \frac{2L}{\delta}.$$

Now we split our analysis into two cases.

Case 1. $M_n \leq L_7$.
In this case, clearly, \(\frac{M_{n+1}}{M_n^d} \geq \frac{1}{L_7^2} \).

Case 2. \(M_n > L_7 \)

In this case, without loss of generality, we may assume \(|A_n(\lambda, \mu)|_v = M_n\). Then

\[
|A_{n+1}(\lambda, \mu)|_v \\
\geq |P(A_n(\lambda, \mu))|_v - |\lambda|_v \cdot |B_n(\lambda, \mu)|_v \\
\geq \delta M_n^d - LM_n \text{ using (9.0.2) and that } |A_n(\lambda, \mu)|_v > L_7 \geq L_6 \\
\geq \delta M_n^d \left(1 - \frac{L}{\delta M_n^{d-1}} \right) \\
\geq \frac{\delta M_n^d}{2} \text{ using (9.1.1) and that } M_n > L_7.
\]

This concludes the proof of Lemma 9.1. □

Let now \(L \) be a real number larger than

\[
\max \left\{ 1, \frac{2|Q(b)|_v}{|a|_v}, \frac{2|P(a)|_v}{|b|_v}, \frac{2L_6}{\min\{|b|_v, |a|_v\}}, \frac{\delta L_6^{d-1}}{2}, \frac{2^d}{\delta |a|_v^{d-1}}, \frac{2^d}{\delta |b|_v^{d-1}} \right\}
\]

(Here we use the fact that both \(a \) and \(b \) are nonzero.)

Lemma 9.2. If either \(|\lambda|_v > L\), or \(|\mu|_v > L\), then

\[
\frac{\delta}{2} \leq \frac{M_{n+1}}{M_n^d} \leq C_{15} + \frac{\delta}{2},
\]

for each \(n \geq 1 \).

Proof. Without loss of generality, we may assume \(|\lambda|_v \geq |\mu|_v\); hence \(|\lambda|_v > L\). We note that

\[
A_1(\lambda, \mu) = P(a) + b\lambda \text{ and } B_1(\lambda, \mu) = Q(b) + a\mu.
\]

Then

\[
|A_1(\lambda, \mu)|_v \\
\geq |b|_v |\lambda|_v - |P(a)|_v \\
\geq \frac{|b|_v |\lambda|_v}{2} \text{ since } |\lambda|_v > L > \frac{2|P(a)|_v}{|b|_v} \\
\geq \frac{L \cdot |b|_v}{2} \\
> L_6 \text{ since } L > \frac{2L_6}{|b|_v}.
\]

Claim 9.3. \(M_n(\lambda, \mu)^{d-1} \geq \frac{|2|\lambda|_v}{\delta} \) for all \(n \geq 1 \).
Proof of Claim 9.3. The claim follows by induction on n. In the case $n = 1$, we have

$$M_1^{d-1} \geq |A_1(\lambda, \mu)|_v^{d-1}$$

$$\geq \left(\frac{|b|_v |\lambda|_v}{2} \right)^{d-1}$$

$$\geq \frac{|b|_v |\lambda|_v}{2} \left(\frac{|b|_v \cdot L}{2} \right)^{d-2}$$

since $|\lambda|_v > L > \delta L_0^{d-1}$.

Now, assume $M_n^{d-1} \geq \frac{2|\lambda|_v}{\delta}$. First we note that since

$$|\lambda|_v > L > \delta L_0^{d-1},$$

we get that $M_n > L_0 > 1$. So, if $|A_n(\lambda, \mu)|_v = M_n(\lambda, \mu)$ then

$$M_{n+1}(\lambda, \mu) \geq |P(A_n(\lambda, \mu))|_v - |\lambda|_v \cdot |B_n(\lambda, \mu)|_v$$

$$\geq \delta M_n(\lambda, \mu)^d - |\lambda|_v M_n(\lambda, \mu) \text{ using (9.0.2)}$$

$$\geq \delta M_n^d \left(1 - \frac{|\lambda|_v}{\delta M_n^{d-1}} \right)$$

$$\geq \frac{\delta}{2} \cdot M_n^d \text{ using the inductive hypothesis.}$$

Similarly, if $|B_n(\lambda, \mu)|_v = M_n(\lambda, \mu)$ then

$$M_{n+1}(\lambda, \mu) \geq |Q(B_n(\lambda, \mu))|_v - |\mu|_v \cdot |A_n(\lambda, \mu)|_v$$

$$\geq \delta M_n(\lambda, \mu)^d - |\lambda|_v M_n(\lambda, \mu) \text{ using (9.0.2) and that } |\lambda|_v \geq |\mu|_v$$

$$\geq \delta M_n^d \left(1 - \frac{|\lambda|_v}{\delta M_n^{d-1}} \right)$$

$$\geq \frac{\delta}{2} \cdot M_n^d \text{ using the inductive hypothesis.}$$

So, the above inequalities yield that

$$M_{n+1} \geq M_n \frac{\delta M_n^{d-1}}{2} \geq M_n \cdot |\lambda|_v \geq M_n \cdot L \geq M_n,$$

and thus $M_{n+1}^{d-1} \geq \frac{2|\lambda|_v}{\delta}$ as well. \qed

Furthermore the above proof actually shows the left-hand side of the inequality from the conclusion of our Lemma 9.2, i.e.,

$$M_{n+1}(\lambda, \mu) \geq \frac{\delta}{2} \cdot M_n(\lambda, \mu)^d.$$
Therefore, for each the two sequences of metrics obtain the equality of the two canonical heights: \(\lambda, \mu \) such pairs \((i, j)\). Indeed, for each curve \(C \) there exists a set of points \((\lambda, \mu)\) such that for each \(a_i \) for \(i = 1, 2 \), if there exists a set of points \([\lambda : \mu : 1]\) which is Zarisky dense in \(\mathbb{P}^2 \) such that for each such pairs \((\lambda, \mu)\) both \([a_1 : b_1 : 1]\) and \([a_2 : b_2 : 1]\) are preperiodic for \(f_{\lambda, \mu} \), then the two sequences of metrics \(\|s([\lambda : \mu : 1])\|_{v,n} - \log \|s([\lambda : \mu : 1])\|_{v,m} \) converge uniformly on \(\mathbb{P}^2 \). Hence, there exists a positive constant \(C_{19} \) such that for each \(m, n \in \mathbb{N} \) with \(n > m \),

\[
\|s([\lambda : \mu : 1])\|_{v,n} - \log \|s([\lambda : \mu : 1])\|_{v,m} \leq \frac{C_{19}}{d^m}.
\]

Hence the sequence of metrics converges uniformly on \(\mathbb{P}^2 \). This allows us to use Corollary 4.3 and conclude that for any given \(a_i, b_i \in \mathbb{Q} \) (for \(i = 1, 2 \)), if there exists a set of points \([\lambda : \mu : 1]\) which is Zarisky dense in \(\mathbb{P}^2 \) such that for each such pairs \((\lambda, \mu)\) both \([a_1 : b_1 : 1]\) and \([a_2 : b_2 : 1]\) are preperiodic for \(f_{\lambda, \mu} \), then the two sequences of metrics \(\|s([\lambda : \mu : 1])\|_{v,n} \) correspond to the two starting points \([a_i : b_i : 1]\) for \(i = 1, 2 \) converge to the same metric. Hence, using (9.0.1), we obtain the equality of the two canonical heights:

\[
\hat{h}_{f_{\lambda, \mu}}([a_1 : b_1 : 1]) = \hat{h}_{f_{\lambda, \mu}}([a_2 : b_2 : 1]).
\]

Therefore, for each \((\lambda, \mu)\) \in \(\mathbb{Q} \times \mathbb{Q} \), \([a_1 : b_1 : 1]\) is preperiodic for \(f_{\lambda, \mu} \) if and only if \([a_2 : b_2 : 1]\) is preperiodic for \(f_{\lambda, \mu} \). This concludes the proof of Theorem 1.4.

Remark 9.4. If one considers a 2-parameter family of endomorphisms \(f_{\lambda, \mu} \) of \(\mathbb{P}^1 \), then for any two starting points \(c_1, c_2 \in \mathbb{P}^1 \), one expects that there exists a Zarisky dense set of parameters \((\lambda, \mu)\) such that both \(c_1 \) and \(c_2 \) are preperiodic for \(f_{\lambda, \mu} \). Indeed, for each \(i = 1, 2 \) and for each distinct positive integers \(m \) and \(n \) there exists a curve \(C_{i,m,n} \) in the moduli containing all \((\lambda, \mu)\) such that \(f^m_{\lambda, \mu}(c_i) = f^m_{\lambda, \mu}(c_i) \). Thus generically \(C_{1,m,n} \cap C_{2,k,\ell} \neq \emptyset \) (for any two pairs of distinct positive integers \((m, n)\) and \((k, \ell)\)). Therefore one would expect

\[
\bigcup_{\substack{k, \ell, m,n \in \mathbb{N} \setminus \{k \neq \ell \} \setminus m \neq n}} C_{1,m,n} \cap C_{2,k,\ell}
\]

is Zarisky dense in the moduli. Hence the first interesting case when one expects the principle of unlikely intersections in algebraic dynamics holds for a 2-dimensional moduli is for a family of endomorphisms of \(\mathbb{P}^2 \) (as proved in Theorem 1.4).
Remark 9.5. In the case of a family $f_{\lambda,\mu}$ of endomorphisms of \mathbb{P}^2, the right question is indeed whether there exist a Zariski dense set of points in the moduli for which both starting points c_1 and c_2 are preperiodic. There are examples when there are infinitely many pairs (λ, μ) such that both c_1 and c_2 are preperiodic under $f_{\lambda,\mu}$, but it is not true that c_1 is preperiodic under $f_{\lambda,\mu}$ if and only if c_2 is preperiodic under $f_{\lambda,\mu}$; this happens when the corresponding points $[\lambda : \mu : 1]$ are not Zariski dense in the moduli \mathbb{P}^2. For example, let

$$f_{\lambda,\mu}([X : Y : Z]) = [X^3 - XZ^2 + \lambda YZ^2 : Y^3 + \mu XZ^2 : Z^3]$$

and $c_1 = [0 : 1 : 1], c_2 = [1 : 2 : 1]$. Then c_1 is a fixed point for

$$f_{0,0}([X : Y : Z]) = [X^3 - XZ^2 : Y^3 : Z^3],$$

while c_2 is not preperiodic for the same map. On the other hand, there exist infinitely many $(\lambda, \mu) \in \mathbb{T} \times \mathbb{T}$ such that both c_1 and c_2 are preperiodic for $f_{\lambda,\mu}$, but they all lie on a line in the moduli.

Indeed, let $\mu = \zeta - 8$, for any root of unity ζ. Then both c_1 and c_2 are preperiodic under the action of

$$f_{0,\mu}([X : Y : Z]) = [X^3 - XZ^2 : Y^3 + (\zeta - 8)XZ^2 : Z^3].$$

Clearly, c_1 is fixed by any map $f_{0,\mu}$. On the other hand, $f_{0,\zeta-8}(c_2) = [0 : \zeta : 1]$, which is preperiodic under any map $f_{0,\mu}$ since ζ is a root of unity and $f_{0,\mu}^n(c_2) = [0 : \zeta^{3^{n-1}} : 1]$ for any positive integer n.

References

30 D. GHIOCA, L.-C. HSIA, AND T. J. TUCKER

Dragos Ghioca, Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
E-mail address: dghioca@math.ubc.ca

Liang-Chung Hsia, Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan, ROC
E-mail address: hsia@math.ntnu.edu.tw

Thomas Tucker, Department of Mathematics, University of Rochester, Rochester, NY 14627, USA
E-mail address: ttucker@math.rochester.edu