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Abstract

Let f1, . . . , fg ∈ C(z) be rational functions, let Φ = (f1, . . . , fg) denote their coordinate-
wise action on (P1)g, let V ⊂ (P1)g be a proper subvariety, and let P be a point in
(P1)g(C). We show that if S = {n > 0 : Φn(P ) ∈ V (C)} does not contain any infinite
arithmetic progressions, then S must be a very sparse set of integers. In particular, for
any k and any sufficiently large N , the number of n 6N such that Φn(P ) ∈ V (C) is
less than logkN , where logk denotes the kth iterate of the log function. This result can
be interpreted as an analogue of the gap principle of Davenport–Roth and Mumford.

1. Introduction

The Mordell–Lang conjecture proved by Faltings [Fal94] and Vojta [Voj96] implies that if V is
a subvariety of a semiabelian variety G defined over C such that V contains no translate of a
positive-dimensional algebraic subgroup of G, then V (C) contains at most finitely many points
of any given finitely generated subgroup Γ of G(C). A reformulation of this result says that if no
translate of V contains a positive-dimensional subvariety W which is fixed by the multiplication-
by-n-map (for any positive integer n > 2), then V (C) ∩ Γ is finite (see [Abr94, Lemma 3]).

In [GT09], Ghioca and Tucker proposed a dynamical analogue of the Mordell–Lang conjecture
(see also [Bel06, Den94]).

Conjecture 1.1. Let X be a quasiprojective variety defined over C, let V ⊂X be any
subvariety, let Φ :X −→X be any endomorphism, and let P ∈X(C). For any integer m > 0,
denote by Φm the mth iterate Φ ◦ · · · ◦ Φ. Then {n > 0 : Φn(P ) ∈ V (C)} is a union of at most
finitely many arithmetic progressions and at most finitely many other integers.

A special case of the above conjecture is our Conjecture 1.3. Before stating it, we need the
following definition.

Definition 1.2. Let X be a quasiprojective variety, let Φ :X −→X be an endomorphism, let P
be a point on X, and let V ⊂X be a subvariety. The orbit of P under Φ is OΦ(P ) = {Φn(P ) : n >
0}. We say that V is periodic under Φ if there is a positive integer N > 1 such that ΦN (V )⊆ V .

We will often omit the phrase ‘under Φ’ if the meaning is clear from the context. We say
that P is preperiodic if OΦ(P ) is finite.
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Conjecture 1.3. Let X be a quasiprojective variety defined over C, let V ⊂X be a subvariety,
let Φ be an endomorphism of X, and let P ∈X(C). If V (C) ∩ OΦ(P ) is an infinite set, then V
contains a positive-dimensional subvariety that is periodic under Φ.

A proof of Conjecture 1.1 would also solve Conjecture 1.3 in the affirmative. Indeed, assuming
Conjecture 1.1, we see that if V (C) ∩ OΦ(P ) is infinite, then V contains OΦN (Φ`(P )) for some
positive integers N and `. Thus, V also contains the Zariski closure W of OΦN (Φ`(P )), which
must have positive dimension since OΦN (Φ`(P )) is infinite; clearly ΦN (W )⊂W , and hence W
is periodic.

In this paper we consider the case when X = (P1)g and Φ is of the form Φ(z1, . . . , zg) =
(f1(z1), . . . , fg(zg)), and we prove a weak form of Conjecture 1.3: either the conclusion of
Conjecture 1.3 holds, or the set {n > 0 : Φn(P ) ∈ V (C)} is very thin.

Theorem 1.4. Let f1, . . . , fg ∈ C(z) be rational functions, and let Φ = (f1, . . . , fg) denote their
coordinate-wise action on (P1)g. Let P = (x1, . . . , xg) ∈ (P1)g(C), and let V ⊂ (P1)g be a proper
subvariety such that Φn(P ) ∈ V for infinitely many n ∈ N. Then there exist positive integers
N, ` > 1 and a real number C > 1 such that one of the following two statements holds:

(i) Φ`+mN (P ) ∈ V for all non-negative integers m;

(ii) for any sufficiently large integers n >m > 0 such that n≡m (mod N) and Φm(P ),
Φn(P ) ∈ V , we have n−m>Cm.

Theorem 1.4 says that, unless V contains a positive-dimensional periodic subvariety, the
integers n such that Φn(P ) ∈ V grow very rapidly. To describe this growth more explicitly we
first recall Knuth’s ‘up-arrow’ notation. Given C > 1, define C ↑↑m for integers m > 1 as follows:
C ↑↑ 1 := C; and for m > 2, set C ↑↑m := CC↑↑(m−1). It follows from Theorem 1.4 that there
is a real number T such that if ni is the ith integer in a given congruence class mod N for
which Φni(P ) ∈ V , then ni >C ↑↑ (i− T ) for all i > T , where C and N are the constants in
Theorem 1.4. The growth condition might also be formulated without restricting to congruence
classes: if ni is the ith integer such that Φni(P ) ∈ V , then ni >C ↑↑ b(i− T )/Nc for i > T . In
particular, ni grows much faster than expk(i) for any k > 1, where expk denotes the kth iterate
of the exponential function.

We may also rephrase Theorem 1.4 in terms of extremely slow growth of the counting function
for the number of indices n such that Φn(P ) ∈ V . To do so, we set the following notation.
Given Y, C > 1, define LC(Y ) to be the smallest integer m such that (C ↑↑m)> Y . In particular,
note that, for any k, LC(Y ) grows slower than the k-fold iterated logarithm.

Corollary 1.5. Let P , Φ, and V be as in Theorem 1.4. Set S = {n > 0 : Φn(P ) ∈ V }. Then
either S contains some infinite arithmetic progression, or there are constants N, C > 1 such that

|{n ∈ S : n 6M}| 6N · LC(M) +OV,Φ,P (1).

Denis [Den94] has treated the question of the distribution of the set S when V does not contain
a periodic subvariety. He showed, for any morphism Φ of varieties over a field of characteristic 0,
that S cannot be ‘very dense of order two’ (see [Den94, Définition 2]). Corollary 1.5 shows that
S satisfies a much stronger non-density condition in the case when the morphism is a product
of self-maps of the projective line.

When our points and maps are defined over a number field K, we may phrase this discussion
in terms of (logarithmic) Weil heights; see [Sil07, ch. 3] for some background on heights.
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If P is not preperiodic, then the Weil height h(Φn(P )) grows at least as degmin(Φ)n, where
degmin(Φ) := minj deg(fj). Thus, we obtain the following corollary.

Corollary 1.6. Let P , Φ, and V be as in Theorem 1.4, and let ni denote the ith integer n
such that Φn(P ) ∈ V . Assume that P and Φ are defined over some number field K, that
degmin(Φ) > 2, that P is not preperiodic for Φ, and that the set S = {n > 0 : Φn(P ) ∈ V } does
not contain any infinite arithmetic progressions. Then there are constants T, N > 1 and C > 1
such that h(Φni(P )) grows faster than C ↑↑ b(i− T )/Nc; in particular, they grow faster than
expk(i) for any k > 1.

This growth is much more rapid than that of the ‘gap principles’ of Mumford [Mum65] and
Davenport and Roth [DR55]. If C is a curve of genus greater than 1, Mumford showed that there
are constants a, b > 0 such that if we order the rational points of C according to Weil height,
then the ith point has Weil height at least ea+bi. In his proof, he embedded points of C into Rd;
Mumford’s gap principle roughly states that there is a constant C > 1 such that if v1, v2 ∈ Rd

are the images of two points on the curve lying in a small sector, then either |v1|>C · |v2| or
|v2|>C · |v1|. Similarly, in our Theorem 1.4, two indices n1, n2 lying in the same congruence
class modulo N can be considered analogous to two vectors v1, v2 lying in a small sector. By
this analogy, given that Faltings [Fal83] later proved that the curve C has only finitely many
rational points, Theorem 1.4 can be viewed as evidence that Conjecture 1.3 is true, at least for
coordinate-wise maps on (P1)g.

In fact, in Theorem 4.1, we will show that the pair of constants (N, C) in the conclusion of
Theorem 1.4 may be replaced by the pair (eN, Ce−ε), for any positive integer e and any positive
real number ε > 0. Hence, by the same analogy to Mumford’s gap principle, we prove that ‘the
smaller the angles’ between two indices, ‘the larger the gap’ between them. Further, if V is a
curve defined over a number field K, we give a different way of forcing C to be large while
controlling the size of N . In Theorem 6.1 we show that, for any ε > 0, we can take C > p− ε and
N =O(p2[K:Q]) for an infinite sequence of primes p.

Other partial results towards Conjecture 1.1 may be found in [Bel06, BGT, BGKT, GT09,
GTZ08]. In addition, [GTZ] discusses a generalization of Conjecture 1.1 for orbits of points
under the action of a commutative, finitely generated semigroup of endomorphisms of X, which
is itself a generalization of the classical Mordell–Lang conjecture. Conjecture 1.1 also fits into
Zhang’s far-reaching system of dynamical conjectures (see [Zha06]). Zhang’s conjectures include
dynamical analogues of the Manin–Mumford and Bogomolov conjectures for abelian varieties
(now theorems of [Ray83a, Ray83b, Ull98, Zha98]).

Our proof of Theorem 1.4 uses p-adic dynamics. First, we find a suitable prime number p
such that V , Φ, and P are defined over Qp, and Φ has good reduction modulo p. Then,
using a one-variable result of Rivera-Letelier [Riv03], we carefully choose a positive integer N ,
and for each `= 0, . . . , N − 1, we construct finitely many multivariable p-adic power series
GH,`(z0, z1, . . . , zm) such that, for n sufficiently large, we have Φ`+nN (P ) ∈ V if and only
if GH,`(n, pn, p2n

, . . . , pm
n
) = 0 for all H. We then show that either GH,` is identically zero

for all H (which implies conclusion (i) of Theorem 1.4), or the integers n with Φ`+nN (P ) ∈ V (C)
grow as in conclusion (ii) of Theorem 1.4.

For each prime number p, we also construct an example (see Proposition 7.1) of a power
series f ∈ Zp[[z]] such that for an infinite increasing sequence {nk}k>1 ⊂ N we have f(pnk) = nk,
and moreover nk+1 < nk + p2nk for each k > 1. This example shows that Theorem 1.4 cannot be
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improved merely by sharpening our p-adic methods; some new technique would be required for
a full proof of Conjecture 1.3.

The outline of the paper is as follows. In § 2 we present some lemmas from p-adic dynamics,
and in § 3 we state and prove a technical lemma on the rapid growth of integer zeros of certain
p-adic functions. In § 4 we prove Theorem 1.4, in § 5 we prove Corollary 1.5, and in § 6 we
prove Theorem 6.1. Finally, in § 7 we prove Proposition 7.1, which shows that our Theorem 1.4
cannot be improved through purely p-adic analytic methods.

2. Background on p-adic dynamics

Fix a prime p. As usual, Zp will denote the ring of p-adic integers, Qp will denote the field of
p-adic rationals, and Cp will denote the completion of an algebraic closure of Qp. Given a point
y ∈ Cp and a real number r > 0, write

D(y, r) = {x ∈ Cp : |x− y|p < r}, D(y, r) = {x ∈ Cp : |x− y|p 6 r}

for the open and closed disks, respectively, of radius r about y in Cp.
Write [y]⊆ P1(Cp) for the residue class of a point y ∈ P1(Cp). That is, [y] =D(y, 1) if |y| 6 1,

or else [y] = P1(Cp)\D(0, 1) if |y|> 1.
The action of a p-adic power series f ∈ Zp[[z]] on D(0, 1) is either attracting (i.e., f contracts

distances) or quasiperiodic (i.e., f is distance-preserving), depending on its linear coefficient.
Rivera-Letelier gives a more precise description of this dichotomy in [Riv03, §§ 3.1 and 3.2]. The
following two lemmas essentially reproduce his Propositions 3.3 and 3.16, but we also verify that
the power series he defines also have coefficients in Qp, not just in Cp.

Lemma 2.1. Let f(z) = a0 + a1z + a2z
2 + · · · ∈ Zp[[z]] be a non-constant power series with

|a0|p, |a1|p < 1. Then there is a point y ∈ pZp such that f(y) = y, and limn→∞ fn(z) = y for
all z ∈D(0, 1). Write λ= f ′(y); then |λ|p < 1, and the following hold.

(i) (Attracting). If λ 6= 0, then there is a radius 0< r < 1 and a power series u ∈Qp[[z]] mapping
D(0, r) bijectively onto D(y, r) with u(0) = y, such that for all z ∈D(y, r) and n > 0,

fn(z) = u(λnu−1(z)).

(ii) (Superattracting). If λ= 0, then write f as

f(z) = y + cm(z − y)m + cm+1(z − y)m+1 + · · · ∈ Zp[[z − y]]

with m > 2 and cm 6= 0. If cm has an (m− 1)th root in Zp, then there are radii 0< r, s < 1
and a power series u ∈Qp[[z]] mapping D(0, s) bijectively onto D(y, r) with u(0) = y, such
that, for all z ∈D(y, r) and n > 0,

fn(z) = u((u−1(z))m
n
).

Proof. Applying the Weierstrass preparation theorem to f(z)− z (or, equivalently, by inspection
of the Newton polygon), f has a Qp-rational fixed point y ∈D(0, 1); that is, y ∈ pZp. Clearly
λ= f ′(y) is also in pZp. Replacing f(z) by f(z + y)− y (and, ultimately, replacing u(z) by
u(z) + y), we may assume hereafter that y = 0. By [Riv03, Proposition 3.2(i)], limn→∞ fn(z) = 0
for all z ∈D(0, 1).

If λ 6= 0, then Rivera-Letelier defines u−1(z) := limn→∞ λ−nfn(z) and proves in [Riv03,
Proposition 3.3(i)] that it has an inverse u(z) under composition that satisfies the desired
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properties for some radius 0< r < 1. Note that f ∈Qp[[z]], and hence λ−nfn ∈Qp[[z]] for all
n > 1. Thus, u−1 ∈Qp[[z]], and therefore u ∈Qp[[z]] as well.

If λ= 0, then choose γ ∈ Zpr{0} with γm−1 = cm, according to the hypotheses. Define
f̃(z) := γf(γ−1z), so that f̃(z) = zm(1 + g(z)), with g ∈ zQp[[z]]. Rivera-Letelier defines

h(z) :=
∑
n>0

m−n−1 log(1 + g(f̃n(z))) ∈ zQp[[z]]

in [Riv03, Proposition 3.3(ii)], where log(1 + z) = z − z2/2 + z3/3− · · · . He then sets ũ−1(z) :=
z exp(h(z)), where exp(z) = 1 + z + z2/2! + · · · , and shows that the inverse ũ of ũ−1 has all the
desired properties for f̃ ; note also that ũ ∈Qp[[z]], because log(1 + ·), exp, g, f̃ ∈Qp[[z]]. Hence,
u(z) = γ−1ũ(z) ∈Qp[[z]] has the desired properties for f , mapping some disk D(0, s) bijectively
onto some disk D(y, r)⊆D(0, 1). Finally, the radius s must be less than 1, or else u(1) 6= y will
be fixed by f , contradicting the fact that limn→∞ fn(u(1)) = y. 2

Lemma 2.2. Let f(z) = a0 + a1z + a2z
2 + · · · ∈ Zp[[z]] be a non-constant power series with

|a0|p < 1 but |a1|p = 1. Then, for any non-periodic x ∈ pZp, there are an integer k > 1, radii
0< r < 1 and s > |k|p, and a power series u ∈Qp[[z]] mapping D(0, s) bijectively onto D(x, r)
with u(0) = x, such that, for all z ∈D(x, r) and n > 0,

fnk(z) = u(nk + u−1(z)).

Proof. Because f ∈ Zp[[z]] with |c1|p = 1 and |c0|p < 1, f maps D(0, 1) bijectively onto itself.
Therefore, by [Riv03, Corollaire 3.12], f is quasiperiodic, which means in particular that, for
some 0< r < 1 and for some positive integer k, the function

f∗(z) := lim
|n|p→0

fnk(z)− z
nk

converges uniformly on D(x, r) to a power series in Cp[[z − x]]. In fact, f∗ ∈Qp[[z − x]], because
(fnk(z)− z)/(nk) ∈Qp[[z − x]] for every n.

Since x is not periodic, f∗(x) 6= 0, by [Riv03, Proposition 3.16(1)]. Define u−1 ∈Qp[[z − x]] to
be the antiderivative of 1/f∗ with u−1(x) = 0. Because (u−1)′(x) 6= 0, we may decrease r so that
u−1 is one-to-one on D(x, r). Also replace k by a multiple of itself so that fk(x) ∈D(0, r), and
write D(0, s) := u−1(D(x, r)). The proof of [Riv03, Proposition 3.16(2)] shows that the inverse u
of u−1, which must also have coefficients in Qp, satisfies the desired properties. 2

Remark 2.3. In fact, the integer k in Lemma 2.2 is at most p, at least in the case when p > 3;
see Proposition 6.4.

Finally, we will also use the following basic result on p-adic analysis.

Lemma 2.4. Let g ∈Qp[[t]] be a non-trivial power series converging on D(0, 1). Then there exists
s ∈ (0, 1] such that, for all α ∈D(0, 1), there is at most one point in D(α, s) at which g vanishes.

Proof. By the Weierstrass preparation theorem, because g is non-trivial and converges on the
closed unit disk, it can have only finitely many zeros {αi}16i6r in D(0, 1). If r = 0, we may set
s= 1; otherwise, we may set s= (1/p) min16i<j6r |αi − αj |p. 2
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3. A growth lemma

We will also need a technical lemma about the growth of certain solutions of multivariate
p-adic power series. Before stating it, we set some notation. First, we fix m > 1, and
with N = {0, 1, 2, . . .} denoting the natural numbers, we order Nm by lexicographic ordering
reading right-to-left. That is, (b1, . . . , bm)≺ (b′1, . . . , b

′
m) if either bm < b′m, or bm = b′m but

bm−1 < b′m−1, or bm = b′m and bm−1 = b′m−1 but bm−2 < b′m−2, etc. Note that this order ≺ gives
a well-ordering of Nm.

Given a power series G ∈Qp[[z0, z1, . . . , zm]], we may write G uniquely as

G(z0, z1, . . . , zm) =
∑
w∈Nm

gw(z0)zw, (3.1)

where gw ∈Qp[[z0]], and for w = (a, b2, . . . , bm) ∈ Nm, zw denotes

zw = za1z
b2
2 z

b3
3 · · · z

bm
m .

Armed with this notation, we can now state our lemma.

Lemma 3.1. Let G(z0, z1, z2, . . . , zm) ∈Qp[[z0, z1, z2, . . . , zm]] be a non-trivial power series in
m+ 1 > 1 variables. Write G=

∑
w gw(z0)zw as in (3.1), and let v ∈ Nm be the minimal index

with respect to ≺ such that gv 6= 0. Assume that gv converges on D(0, 1), and let s be a positive
real number such that, for all α ∈ Zp, gv does not vanish at more than one point of the disk
D(α, s), as in Lemma 2.4. Assume also that there exists B > 0 such that, for each w � v, all
coefficients of gw have absolute value at most pB|w|.

Then there exists C > 1 with the following property: if α ∈D(0, 1), and if {ni}i>1 is a strictly
increasing sequence of positive integers such that, for each i > 1,

(a) |ni − α|p 6 s, and

(b) G(ni, pni , p2ni , p3ni , . . . , pm
ni ) = 0,

then ni+1 − ni >Cni for all sufficiently large i.

Proof. If gw = 0 for all w 6= v, then G= gv(z0)zv. By hypothesis (b), the one-variable non-zero
power series gv(z0) vanishes at all points of the sequence {ni}i>1, which is a contradiction; hence,
no such sequence exists. (In particular, if m= 0, then G is a non-trivial power series in the one
variable z0, and therefore G vanishes at only finitely many points ni.) Thus, we may assume
that gw is non-zero for some w � v.

Next, for any m-tuple w = (a, b2, . . . , bm) ∈ Nm and n > 0, set |w| := a+ b2 + · · ·+ bm, and
define the function fw : N→ N by

fw(n) = an+
m∑
j=2

bjj
n. (3.2)

For any w, w′ ∈ Nm, note that w ≺ w′ if and only if fw(n) grows more slowly than fw′(n) as
n→∞.

Claim 3.2. For any A> 0, there is an integer M =M(v, A) > 0 such that, for each w � v and
n >M ,

fw(n)− fv(n) > n+A(|w| − |v| − 1).
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Proof of Claim 3.2. Write v = (a, b2, . . . , bm), and choose M >A large enough so that jM >
(a+ 1)M +

∑j−1
k=2 bkk

M for all j = 2, . . . , m. Write w = (a′, b′2, . . . , b
′
m). Then

fw(n)− fv(n) = (a′ − a)n+ (b′2 − b2)2n + · · ·+ (b′m − bm)mn.

We consider two cases as follows.

Case 1. If b′k = bk for each k = 2, . . . , m, then a′ > a, and therefore

fw(n)− fv(n)− n= (a′ − a− 1)n > (a′ − a− 1)A=A(|w| − |v| − 1)

for n >M , because M >A.

Case 2. Otherwise, there exists k = 2, . . . , m such that b′k > bk. Let j be the largest such k, so
that b′k = bk for k > j. Then

fw(n)− fv(n)−A|w|+A|v| = (a′ − a)(n−A) +
j−1∑
k=2

(b′k − bk)(kn −A) + (b′j − bj)(jn −A)

> −an−
j−1∑
k=2

bkk
n + jn −A > n−A,

where the first inequality is because n >A and b′j − bj > 1, and the second is because n >M .
The proof of Claim 3.2 is now complete. 2

By hypothesis (b), for any i such that ni >M(v, B), we have

|gv(ni)|p =
∣∣∣∣∑
w�v

gw(ni)pfw(ni)−fv(ni)

∣∣∣∣
p

6 p−ni+B|v|+B, (3.3)

where the inequality is by Claim 3.2, the fact that |ni|p 6 1, and the fact that the absolute values
of all coefficients of gw are at most pB|w|. Let β ∈D(α, s) ∩ Zp be a limit point of the sequence
{ni}i>1. Then, by inequality (3.3), we have gv(β) = 0. Thus, gv can be written as

gv(z) =
∑
i>δ

ci(z − β)i,

where δ > 1 and cδ 6= 0. In fact, we must have |cδ|psδ > |ci|psi for all i > δ; otherwise, inspection of
the Newton polygon shows that gv would have a zero besides β in D(α, s). Thus, for i sufficiently
large (i.e., such that ni >M(v, B)), we have

|cδ(ni − β)δ|p = |gv(ni)|p 6 p−ni+O(1),

by hypothesis (a) and inequality (3.3), and hence

|ni − β|p 6 |cδ|−1/δ
p p−ni/δ+O(1). (3.4)

It follows that

ni+1 ≡ ni mod pbni/δ−O(1)c. (3.5)

Hence, if we choose C such that 1<C < p1/δ, we have ni+1 − ni >Cni for i sufficiently large, as
desired. 2

Remark 3.3. Lemma 3.1 holds also if G is defined over a finite extension K of Qp; the only
significant change is that the constant C will depend also on the ramification index e of K/Qp.

1062



A gap principle for dynamics

4. Proof of Theorem 1.4

If any xj (without loss of generality, xg) is preperiodic under fj , choose m such that x′g :=
fmg (xg) is periodic under fg, and consider the action of Φ′ := (f1, . . . , fg−1) on (P1)g−1, with
V ′ := V ∩ {zg = x′g} viewed as a subvariety of (P1)g−1. By this reduction we may assume, without
loss of generality, that no xj is preperiodic.

Step (i). Our first goal is to find an appropriate prime p so that we may work over Zp.
Choose homogeneous coordinates for each P1, so that we may write each fj as fj([a : b]) =

[φj(a, b) : ψj(a, b)] for homogeneous relatively prime polynomials φj , ψj ∈ C[a, b]; write P in these
coordinates as well. Let V be a finite set of polynomials (in g pairs of homogeneous variables)
generating the vanishing ideal of the variety V . Let R1 be the subring of C generated by
the coordinates of P , the coordinates of all critical points of each fj , the coefficients of each
polynomial H ∈ V, the coefficients of each φj and ψj , and the reciprocals

1/Res(φ1, ψ1), . . . , 1/Res(φg, ψg)

of the resultants Res(φ1, ψ1), . . . , Res(φg, ψg).
Each superattracting periodic point Q of any fj of period κj has a critical point in its cycle;

in particular, there are only finitely many such points, and they are all defined over R1. (Note
that, in contrast to the attracting case, our upcoming choice of a prime p will not affect whether
a periodic point Q is superattracting.) For each such point, we may then choose an R1-rational
local coordinate xj,Q at Q, and write fκj

j as

f
κj

j (xj,Q) = cj,Qx
mj,Q

j,Q +O(xmj,Q+1
j,Q ), (4.1)

where mj,Q > 2 and cj,Q 6= 0.
Let R2 be the subring of C generated by R1 and all the (mj,Q − 1)th roots of cj,Q, for all

superattracting points Q of fj , where cj,Q and mj,Q are as in (4.1).
Clearly, R2 is a finitely generated Z-algebra. By [Bel06, Lemma 3.1] (see also [Lec53]), we

can embed R2 into Zp for some prime p. Thus, we may consider P , Φ, and V to be defined
over Zp. Because the resultants Res(φj , ψj) are all mapped to units in Zp, each map fj has
good reduction, i.e., reducing fj modulo p gives an endomorphism of P1 defined over Fp. The
(mj,Q − 1)th roots of cj,Q will be needed in Step (ii), to deal with superattracting points.

Step (ii). Next, we will apply Lemmas 2.1 and 2.2 to produce certain power series uj(z), points
µj ∈Qp in the domain of uj , and various preliminary quantities.

Write P := (x1, . . . , xg) ∈ (P1)g(Zp). There are only p+ 1 residue classes in P1(Zp); hence,
for each j = 1, . . . , g, there are integers kj,0 > 1 and `j,0 > 0 such that fkj,0

j maps the residue

class [f `j,0

j (xj)] into itself. By a PGL(2, Zp)-change of coordinates at each j, we may assume

that f `j,0

j (xj) ∈ pZp, and therefore fkj,0

j may be written as a non-constant power series in Zp[[z]]
mapping D(0, 1) to itself.

If |(fkj,0

j )′(f `j,0

j (xj))|p < 1 (i.e., the attracting or superattracting case, in the language
of § 2), we may apply Lemma 2.1. (In the superattracting case we are using the fact that the
corresponding coefficient cj,Q has an (mj,Q − 1)th root in Qp. Although the new local coordinate
x̃j,Q at the superattracting point may differ from the local coordinate xj,Q of Step (i), both
are defined over Qp. Thus, there is some γj,Q ∈Q×p such that xj,Q = γj,Qx̃j,Q +O(x̃2

j,Q), and the
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expansion cj,Qx
mj,Q

j,Q +O(xmj,Q+1
j,Q ) from (4.1) becomes γmj,Q−1

j,Q cj,Qx̃
mj,Q

j,Q +O(x̃mj,Q+1
j,Q ). Hence,

the integer mj,Q is preserved, and the lead coefficient still has all its (mj,Q − 1)th roots in Qp.
Of course, those roots are in fact in Zp, because our choice of coordinates forced fkj,0

j ∈ Zp[[z]].)

Lemma 2.1 yields that there is a point yj ∈D(0, 1) fixed by fkj,0

j , along with radii rj and sj
(where sj := rj in the non-superattracting case), and an associated power series uj ∈Qp[[z]].
Set kj,1 = kj,0 and `j,1 = `j,0 + njkj,1 for a suitable integer nj > 0 so that f `j,1

j (xj) ∈D(yj , rj).

Define λj,1 := (fkj,1

j )′(yj) to be the multiplier of the point yj , so that |λj,1|p < 1. Define µj :=

u−1
j (f `j,1

j (xj)); note that µj ∈ pZp, because sj < 1. In addition, µj 6= 0, because uj is bijective

and uj(0) = yj is fixed by fj , while uj(µj) = f
`j,1

j (xj) is not.

If |(fkj,0

j )′(f `j,0

j (xj))|p = 1 (i.e., the quasiperiodic case, in the language of § 2), apply

Lemma 2.2 to fkj,0

j and the point f `j,0

j (xj) to obtain radii rj and sj and a power series uj . Define

µj := u−1
j (f `j,0

j (xj)), and set `j,1 = `j,0 and kj,3 = njkj,0, for a suitable integer nj > 1 so

that fkj,3+`j,1

j (xj) ∈D(f `j,1

j (xj), rj). (The existence of such an integer nj follows easily from
Lemma 2.2. Meanwhile, the jump from a subscript of 0 to 3 is because certain complications, to be
addressed in Steps (iii) and (iv), do not arise in the quasiperiodic case.) Note that f `j,1+nkj,3

j (xj)

may be expressed as a power series in the integer n > 0; specifically, f
`j,1+nkj,3

j (xj) =
uj(nkj,3 + µj).

Step (iii). In this step, we consider only the case when 0< |λj,1|p < 1 (i.e., attracting but not
superattracting). We will express certain functions of n as power series in n and pn.

Write λj,1 = αjp
ej,1 , where ej,1 > 1 and αj ∈ Z×p . If αj is a root of unity, we can choose an

integer Mj,1 > 1 such that αMj,1

j = 1. If αj is not a root of unity, it is well-known that there

is an integer Mj,1 > 1 such that αnMj,1

j can be written as a power series in n with coefficients
in Zp. (For example, apply Lemma 2.2 to the function z 7→ αjz and the point p. In fact, by
Theorem 6.2, we can choose Mj,1 to be the smallest positive integer such that |αMj,1

j − 1|p < 1,
so that Mj,1|(p− 1).) Either way, set

kj,3 :=Mj,1kj,1, λj,2 := λ
Mj,1

j,1 and ej,2 :=Mj,1ej,1.

(The subscript again jumps to 3 because of the complications of Step (iv).) Thus, we can write

λnj,2 = (pn)ej,2gj,1(n) for all integers n > 0, (4.2)

for some power series gj,1(z) ∈ Zp[[z]].

Step (iv). In this step, we consider only the superattracting case, when λj,1 = 0, and we will
express certain functions of n as power series in n, pn, and pm

n
j,2 , where mj,2 > 2 is a certain

integer.
Write the integer mj :=mj,Q > 2 (for the unique superattracting point Q of fj in D(0, 1), as

in Lemma 2.1(ii) and (4.1)) as mj = ajp
bj , for integers aj > 1 and bj > 0, with p - aj . Then, as in

Step (iii), we can find a positive integer Mj,1 such that anMj,1

j can be written as a power series
in n with coefficients in Zp. Set

kj,2 :=Mj,1kj,1 and mj,1 :=m
Mj,1

j .

Then mn
j,1 can be written as a power series in n and pn, with coefficients in Zp.
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In addition, recall that µj = u−1
j (f `j,1(xj)) satisfies 0< |µj |p < 1; thus, we can write µj =

βjp
ej , where ej > 1 and βj ∈ Z×p . If βj is a root of unity with, say, βMj,2

j = 1 for some positive

integer Mj,2, choose a positive integer Mj,3 so that Mj,2|(m
2Mj,3

j,1 −mMj,3

j,1 ). Set

kj,3 :=Mj,3kj,2 and mj,2 :=m
Mj,3

j,1 ,

and note that β
mn

j,2

j is constant in n.
On the other hand, if βj is not a root of unity, then, as in Step (iii), there is an integer

1 6M ′j,2 6 p− 1 such that β
nM ′j,2

j can be written as a power series in n over Zp. As above, choose

a positive integer M ′j,3 such that M ′j,2|(m
2M ′j,3

j,1 −m
M ′j,3

j,1 ), and set

kj,3 :=M ′j,3kj,2 and mj,2 :=m
M ′j,3

j,1 .

Then mn
j,2 ≡mj,2 (mod M ′j,2) for all n ∈ N, and therefore

β
mn

j,2

j = β
mj,2

j · β
mn

j,2−mj,2

j = β
mj,2

j · (β
M ′j,2

j )(mn
j,2−mj,2)/M ′j,2

can be written as a power series in (mn
j,2 −mj,2)/M ′j,2 with coefficients in Zp. Using the fact that

p -M ′j,2, and expressing mn
j,2 = (mn

j,1)M
′
j,3 as a power series in n and pn with coefficients in Zp,

we conclude that β
mn

j,2

j can in fact be written as a power series in n and pn, with coefficients
in Zp.

Thus, whether or not βj is a root of unity, we can write

µ
mn

j,2

j = (pm
n
j,2)ejgj,1(n, pn) for all integers n > 0, (4.3)

for some power series gj,1(z0, z1) ∈ Zp[[z0, z1]].

Step (v). Let k := lcm(k1,3, . . . , kg,3) > 1; this will essentially be our value of N in the statement
of Theorem 1.4 except for one more change in Step (vii). In the attracting case, we set

λj,3 := λ
k/kj,3

j,2 , ej,3 :=
k

kj,3
ej,2 and gj,2(z) := (gj,1(z))k/kj,3 ∈ Zp[[z]];

and in the superattracting case, we set

mj,3 :=m
k/kj,3

j,2 and gj,2(z0, z1) := gj,1

(
k

kj,3
z0, z

k/kj,3

1

)
∈ Zp[[z0, z1]].

With this new notation, it follows from Steps (ii)–(iv) that, for any integer n > 0:

(1) f
`j,1+nk
j (xj) = uj(nk + µj), if f `j,1(xj) lies in a quasiperiodic residue class;

(2) f
`j,1+nk
j (xj) = uj(λnj,3µj) = uj((pn)ej,3gj,2(n)µj), if f `j,1(xj) lies in an attracting residue

class; and

(3) f
`j,1+nk
j (xj) = uj(µ

mn
j,3

j ) = uj((pm
n
j,3)ejgj,2(n, pn)), if f `j,1(xj) lies in an superattracting

residue class,

where µj = u−1
j (f `j,1(xj)) as in Step (ii). In particular, in all three cases, we have expressed

f
`j,1+nk
j (xj) as a power series in n, pn, and, if needed, pm

n
j,3 .

Let L= max{`1,1, . . . , `g,1}. For each `= L, . . . , L+ k − 1 and each j = 1, . . . , g, choose
a linear fractional transformation ηj,` ∈ PGL(2, Zp) so that ηj,` ◦ f `j (xj) ∈D(0, 1). Then ηj,` ◦
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f
`−`j,1

j (D(0, 1))⊆D(0, 1), because fj has good reduction. Finally, define Ej,` = ηj,` ◦ f
`−`j,1

j ◦ uj ,
so that Ej,` ∈Qp[[z]] maps D(0, sj) into D(0, 1).

Step (vi). In this step, we will write down power series Fj,` for f `+nkj in terms of n, pn, and pm
n
.

We will also produce bounds Bj,` to be used in applying Lemma 3.1. For each j = 1, . . . , g, we
consider the three cases that f `j (xj) lies in a quasiperiodic, attracting (but not superattracting),
or superattracting residue class for the function fkj .

In the quasiperiodic case, for each `= L, . . . , L+ k − 1, define the power series

Fj,`(z0) = Ej,`(kz0 + µj) ∈Qp[[z0]],

so that Fj,`(n) = ηj,` ◦ f `+nkj (xj) for all n > 0. All coefficients of Fj,` have absolute value at most
1 = p0, because |k|p, |µj |p 6 sj and Ej,` maps D(0, sj) into D(0, 1). Hence, we set our bound Bj,`
to be Bj,` := 0.

Second, in the attracting (but not superattracting) case, for each `= L, . . . , L+ k − 1, define
the power series

Fj,`(z0, z1) = Ej,`(z
ej,3

1 gj,2(z0)µj) ∈Qp[[z0, z1]],

where Ej,` and gj,2 are as in Step (v), so that Fj,`(n, pn) = ηj,` ◦ f `+nkj (xj) for all n > 0.

Still in the attracting (but not superattracting) case, because Ej,` maps D(0, sj) into D(0, 1),
there is some Bj,` > 0 such that, for every i > 0, the coefficient of zi in Ej,`(z) has absolute
value at most piBj,` . Recalling also that gj,2 ∈ Zp[[z]] and |µj |p < 1, it follows that if we write
Fj,`(z0, z1) =

∑∞
i=0 hi(z0)zi1 (where hi ∈Qp[[z]]), then for each i > 0, all coefficients of hi have

absolute value at most piBj,` .
Third, in the superattracting case, for each `= L, . . . , L+ k − 1, define the power series

Fj,`(z0, z1, zmj,3) = Ej,`(gj,2(z0, z1)zej
mj,3) ∈Qp[[z0, z1, zmj,3 ]],

where Ej,` and gj,2 are as in Step (v), so that Fj,`(n, pn, p
mn

j,3) = ηj,` ◦ f `+nkj (xj) for all n > 0.

Still in the superattracting case, because Ej,` mapsD(0, sj) intoD(0, 1), there is someBj,` > 0
such that, for every i > 0, the coefficient of zi in Ej,`(z) has absolute value at most piBj,` . Hence, if
we write Fj,`(z0, z1, zmj,3) =

∑
i1,i2>0 hi1,i2(z0)zi11 z

i2
mj,3

(where hi1,i2 ∈Qp[[z]]), then as before,
since gj,2 ∈ Zp[[z0, z1]], all coefficients of hi1,i2 have absolute value at most pi2Bj,` 6 pBj,`(i1+i2).

Finally, set B := max{Bj,` : 1 6 j 6 g and L 6 ` 6 L+ k − 1}.

Step (vii). Let m := max{1,maxj{mj,3}}, where the inner maximum is taken over all j ∈
{1, . . . , g} for which f `jj (xj) is in a superattracting residue class for fkj . For each `= L, . . . , L+
k − 1, let V` ⊆ Zp[t1, . . . , tg] be the finite set of polynomials V generating the vanishing ideal
of V from Step (i), but now dehomogenized with respect to the coordinates determined by
(η1,`, . . . , ηg,`). For each polynomial H ∈ V`, define

GH,`(z0, . . . , zm) =H(F1,`, F2,`, . . . , Fg,`) ∈Qp[[z0, z1, . . . , zm]].

Then, by construction, GH,`(n, pn, p2n
, . . . , pm

n
) is defined for all integers n > 0, and is zero

precisely at those n for which Φ`+nk(P ) ∈ V .
For each non-trivial GH,`, write

GH,`(z0, p
n, p2n

, . . . , pm
n
) =

∑
w∈Nm

gw(z0)pfw(n)
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and select v ∈ Nm as in the statement of Lemma 3.1. By our choice of the bound B in
Step (vi), and because all coefficients of H lie in Zp, all coefficients of gw have absolute value at
most pB|w|, for every w ∈ Nm. Since GH,`(n, pn, p2n

, . . . , pm
n
) is defined at every n > 0, gv must

converge on D(0, 1); therefore, we may choose a radius 0< sH,l 6 1 for gv as in Lemma 2.4.
Let s be the minimum of all the sH,` across all such pairs (H, `). The set Zp may be covered

by the disks D(0, s), D(1, s), . . . , D(pM − 1, s), for some integer M > 0. Let N := pMk.
Apply Lemma 3.1 (with the bound B from Step (vi) and radius s from the previous

paragraph) to every non-trivial GH,`, and let C0 > 1 be the minimum of the resulting constants.
Choose any ε > 0, and let C := Cp

M−ε
0 > 1.

Step (viii). Unless conclusion (ii) of Theorem 1.4 holds for these values of C and N , there is some
` ∈ {L, . . . , L+N − 1}, and there are infinitely many pairs (n, n′) of positive integers such that:

(i) Φ`+nN (P ), Φ`+n′N (P ) ∈ V ; and

(ii) 0< n′ − n 6 Cn.

For any fixed n > 1, there are only finitely many choices of n′ for which condition (ii) above
holds; thus, there are pairs (n, n′) with n arbitrarily large satisfying these two conditions.

Write `= `1 + αk for integers L 6 `1 < L+ k and 0 6 α < pM . For each pair (n, n′) above,
set n1 = npM + α and n′1 = n′pM + α. Then there are infinitely many pairs (n1, n

′
1) such that:

(1) Φ`1+n1k(P ), Φ`1+n′1k(P ) ∈ V ;

(2) n1 ≡ n′1 ≡ α (mod pM ); and

(3) 0< (n′1 − n1)/pM 6 C(n1−α)/pM
.

Recalling that C = Cp
M−ε

0 > 1 and α > 0, condition (3) becomes:

(3′) 0< n′1 − n1 6 pMC
(n1−α)(1−εp−M )
0 6 Cn1

0 ,

for n1 sufficiently large (more precisely, for n1 > (MpM log p)/(ε log C0)). However,
conditions (1), (2), and (3′) coupled with Lemma 3.1 yield that GH,`1 must be trivial for all
H ∈ V`1 . Hence, Φ`1+nk(P ) ∈ V for all n > 0. This completes the proof of Theorem 1.4.

In the final step of the proof, we produced the constants N and C that appeared in the
statement of Theorem 1.4. In fact, as the following result shows, for any integer e > 1, we can
increase C to Ce−ε, at the expense of increasing N to eN .

Theorem 4.1. If the proof of Theorem 1.4 yields constants C > 1 and N > 1 satisfying its
conclusion, then, for any integer e > 1 and for any ε > 0, the conclusion of Theorem 1.4 holds
when replacing the pair (C, N) by (Ce−ε, eN).

Proof. In Steps (v) and (vii) of the proof of Theorem 1.4, we had produced positive integers k,
L, and M , and a real constant C0 > 1. We then set N = pMk and C = Cp

M−ε
0 . Instead, we now

set N := epMk and C := Cep
M−ε

0 , as promised in the statement of Theorem 4.1.
Step (viii) of the proof of Theorem 1.4 still applies even when we change all appearances

of pM to epM . More precisely, we have 0 6 α < epM when we write `= `1 + αk, and we write
n1 = nepM + α and n′1 = n′epM + α. The (mod pM ) in condition (2) becomes (mod epM ),
which of course still implies congruence modulo pM . The change from pM to epM ultimately
leaves condition (3′) as 0< n′1 − n1 6 Cn1

0 , although now only for n1 > (epM log(epM ))/(ε log C0).
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Thus, conditions (1), (2), and (3′) remain the same as before, allowing exactly the same
application of Lemma 3.1. The rest of the proof then goes through verbatim. 2

5. Proof of Corollary 1.5

Assume that S = {n > 0 : Φn(P ) ∈ V } does not contain any infinite arithmetic progressions.
Hence the second conclusion of Theorem 1.4 holds, and thus, taking T sufficiently large,
we find that if ` ∈ {T + 1, T + 2, . . . , T +N} and Φ`+mN (P ), Φ`+nN (P ) both lie in V , for some
n >m > 0, then n−m>Cm. Let A= T +N +NC, and for each ` ∈ {T + 1, . . . , T +N}, let

S` := {n > C : `+ nN ∈ S}.

For all i > 1, let n`,i be the ith smallest integer in S`, or n`,i =∞ if |S`|< i. Then we
have that n`,1 >C = C ↑↑ 1, and n`,i+1 > n`,i + Cn`,i >Cn`,i >C ↑↑ (i+ 1) for all i > 1. Hence,
LC(n`,i) > i, and therefore LC(M) > i for all M > n`,i. Summing across all `, we have

|{n ∈ S : n 6M}| 6 |{n ∈ S : n 6A}|+
T+N∑
`=T+1

|{n ∈ S` : n 6M}| 6A+N · LC(M).

6. Curves

If V is a curve and everything is defined over a number field, we can, using a different method,
obtain slightly more information about the relationship between C, N , and the prime p (albeit
for a sparse sequence of primes). Further, given a little more information about the applicable
primes p, it may be possible to improve the following method to a proof of Conjecture 1.1 in this
special case of curves over number fields.

Theorem 6.1. Let P , Φ, and V be as in Theorem 1.4. Assume further that V is an irreducible
curve that is not periodic, and that V , P , and Φ are all defined over a number field K. Then, for
any ε > 0, there are infinitely many primes p and associated constants C = C(p)> p− ε and N =
N(p) =O(p2[K:Q]) with the following property: for any integers n >m > 0 and ` ∈ {1, 2, . . . , N},
if m is sufficiently large and if both Φ`+mN (P ), Φ`+nN (P ) ∈ V , then n−m>Cm.

The proof of Theorem 6.1 is simpler than the proof of Theorem 1.4, but it requires an
additional ingredient that is only available over number fields, namely, the existence of a
suitable indifferent cycle in at least one of the variables (which one obtains over number fields
by [Sil93, Theorem 2.2] or [BGKT, Lemma 4.1]). Because of the counterexample presented in
Proposition 7.1, it seems likely that a proof of Conjecture 1.1 would also have to involve extra
information beyond what is used in the proof of Theorem 1.4. Thus, although Theorem 6.1 only
applies to curves, it may well be that the techniques used to prove it are better adapted to a
general proof of Conjecture 1.1.

To prove Theorem 6.1 we will need a sharper version of Lemma 2.2, giving an upper bound
on k. We first recall the following special case of [BGT, Theorem 3.3].

Theorem 6.2. Let p > 3 be prime, let Kp/Qp be a finite unramified extension, and let Op
denote the ring of integers in Kp. Let g(z) = a0 + a1z + a2z

2 + · · · ∈ Op[[z]] be a power series
with |a0|p, |a1 − 1|p < 1 and, for each i > 2, |ai|p 6 p1−i. Then, for any z0 ∈ Op, there is a power
series u ∈ Op[[z]] mapping D(0, 1) into itself such that u(0) = z0, and u(z + 1) = g(u(z)).
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Remark 6.3. In [BGT], the theorem is only stated for Kp = Qp, but the proof goes through
essentially unchanged for any finite unramified extension of Qp.

We can now give an explicit bound on k. However, we give up any claims on the size of
the image of u. In fact, if z0 is a periodic point, the map u is constant. (On the other hand,
if z0 is not periodic, then the derivative of u is non-vanishing at zero, and hence u is a local
bijection.)

Proposition 6.4. Let p > 3 be prime, let Kp and Op be as in Theorem 6.2, let h(z) ∈ Op[[z]]
be a power series, and let z0 ∈ Op. Suppose that |h(z0)− z0|p < 1 and |h′(z0)|p = 1. Then there
is an integer 1 6 k 6 p[Kp:Qp] and a power series u ∈ Op[[z]] mapping D(0, 1) into D(0, 1) such
that u(0) = z0 and hk(u(z)) = u(z + 1). In particular,

hnk(z0) = u(n) for all n > 0.

Proof. Let q = p[Kp:Qp] denote the cardinality of the residue field of Op. Conjugating by a
translation we may assume that z0 = 0. Let

g(z) := h(pz)/p= b0 + b1z + b2z
2 + · · · ∈ Op[[z]].

We find that |b0|p 6 1, |b1|p = 1, and |bi|p 6 p1−i for each i > 2. By considering the iterates of
the map z 7→ b0 + b1z, we have gk(z)≡ z (mod p) for some 1 6 k 6 q. Hence, gk(z) = a0 + a1z +
a2z

2 + · · · satisfies the hypotheses of Theorem 6.2, giving a power series ũ ∈ Op[[z]] mapping
D(0, 1) into itself, with ũ(0) = 0 and ũ(z + 1) = gk(ũ(z)). It follows that u(z) = pũ(z) has the
desired properties. 2

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1. For simplicity, we assume that X = P1 × P1, and that V ⊂X is an
irreducible curve; the argument is easily modified to include the general case. If xi is preperiodic
under fi for either i= 1 or i= 2, the result is trivial. If both f1 and f2 are of degree one, V can
be shown to be periodic, either by the Skolem–Mahler–Lech theorem, by [BGKT, Theorem 3.4],
or by [BGT, Theorem 1.3]. Thus, possibly after permuting indices, we may assume that the
degree of f1 is greater than one. Define π1 : V → P1(K) by (z1, z2)→ z1. By taking a periodic
cycle D = {d1, . . . , da} of f1 of sufficiently large cardinality a, defined over some number field L,
we may assume that D is not superattracting (i.e., no di is a critical point of f1), that all points
(α1, α2) ∈ π−1

1 (D) ∩ V are smooth points on V , and finally that, for (z1, z2) near (α1, α2),

z1 − α1 = γα · (z2 − α2) +O((z2 − α2)2), (6.1)

for some γα 6= 0. (Note that only finitely many points violate these conditions.) Since f1 is
not preperiodic, by [Sil93, Theorem 2.2] (or [BGKT, Lemma 4.1]), we can find infinitely many
primes p such that |fn1 (x1)− d1|p < 1 for some n, where | · |p denotes some extension of the
p-adic absolute value on Q to L. We may of course assume that L/Q is unramified at p and that
|γα|p = |(fa1 )′(d1)|p = 1 for all sufficiently large p, as there are only finitely many p not fitting
these conditions. In particular, the orbit of x1 under f1 ends up in a domain of quasiperiodicity.

If the orbit of x2 under f2 also has quasiperiodic behavior, then V is periodic by [BGKT,
Theorem 3.4]. Otherwise, the orbit of x2 ends up in an attracting or superattracting domain.
The arguments in these two cases are very similar, and we shall only give details for the
attracting case. Hence, assume that fn2 (x2) tends to an attracting cycle E = {e1, e2, . . . , eb},
with multiplier λ2 satisfying 0< |λ2|p < 1. Since λ2 and E are defined over Kp, and Kp/Qp

is unramified, we have |λ|p 6 1/p. Note that b 6 p[Kp:Qp] + 1 6 p[K:Q] + 1. Let N = lcm(a, b),
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so that N 6 a · (p[K:Q] + 1) =O(p[K:Q]). Choose representatives {αij : 1 6 i 6 a, 1 6 j 6 b} for
Z/NZ such that

|fαij+Nn
1 (x1)− di|p < 1, |fαij+Nn

2 (x2)− ej |p < 1

for n sufficiently large. At the cost of increasing N by a factor bounded by p[K:Q], by Proposi-
tion 6.4 and Lemma 2.1 there exist p-adic power series Ai, Bj such that

f
αij+Nn
1 (x1)− di =Ai(n), f

αij+Nn
2 (x2)− ej =Bj(λn2 ) (6.2)

for n sufficiently large. If n >m and φmN+αij (P ), φnN+αij (P ) ∈ V , then (6.1) and (6.2) yield
that

|Ai(n)−Ai(m)|p =O(|λ2|mp ),

since we had |γα|p = 1 in (6.1). Hence n≡m (mod pm−Op(1)), where the Op(1) depends on the
derivative of Ai. Thus, if we take C < p, we find that n >m+ Cm for m sufficiently large.

7. An analytic counterexample

It is natural to ask if an even more rapid growth condition than the one in Theorem 1.4 should
hold when V is not periodic. However, as the following shows, Lemma 3.1 is essentially sharp.

Proposition 7.1. For any prime p > 2 and for any positive integer n1, there is an increasing
sequence {nj}j>2 of positive integers and a power series f(z) ∈ Zp[[z]] such that

f(pnj ) = nj and nj + pnj 6 nj+1 6 nj + pn1+···+nj

for all j > 1. Moreover, n1 + · · ·+ nj−1 6 nj , and hence nj+1 6 nj + p2nj .

Remark 7.2. Setting G(z0, z1) = z1 − f(z0), we find that Lemma 3.1 cannot be substantially
improved; specifically, the constant C is at most p2 for this example. Furthermore, the bound of
p2 can be improved to something much closer to p because, by a simple inductive argument, one
can show that, for every j > 1, we have

n1 + · · ·+ nj 6
nj+1

n1
,

from which nj+1 6 nj + pnj ·(1+(1/n1)) follows. Letting n1 be arbitrarily large we obtain that
for every ε > 0 there exists an increasing sequence {nj}j>1 satisfying the hypothesis of
Proposition 7.1, and for which

nj + pnj 6 nj+1 6 nj + p(1+ε)·nj .

Proof of Proposition 7.1. We will inductively construct the sequence {nj : j > 2} of positive
integers and a sequence {fj(z) : j > 1} of polynomials fj ∈ Zp[z], with deg(fj) = j − 1. The power
series f will be f = limj→∞ fj .

Let f1 be the constant polynomial n1. Then, for each j > 1, suppose we are already given
f1, . . . , fj and n1, . . . , nj such that fk(pni) = ni for each i, k with 1 6 i 6 k 6 j. Choose nj+1 to
be the unique integer such that

nj + 1 6 nj+1 6 nj + pn1+···+nj

and

|nj+1 − fj(0)|p 6 |p|n1+···+nj
p . (7.1)
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Note that, because fj ∈ Zp[z] and fj(pnj ) = nj , we have

|fj(0)− nj |p = |fj(0)− fj(pnj )|p 6 |p|nj
p ,

and therefore |nj+1 − nj |p 6 |p|nj
p , implying that nj+1 > nj + pnj and that nj+1 > n1 + n2 + · · ·+

nj , as claimed in the proposition.

Define gj(z) := (z − pn1)(z − pn2) · · · (z − pnj ), and set

cj :=
nj+1 − fj(pnj+1)

gj(pnj+1)
∈Qp,

and

fj+1(z) := fj(z) + cjgj(z) ∈Qp[z].

We claim that |cj |p 6 1. Indeed, we have

|fj(0)− fj(pnj+1)|p 6 |p|nj+1
p , (7.2)

because fj ∈ Zp[[z]]. Therefore,

|nj+1 − fj(pnj+1)|p 6 max{|nj+1 − fj(0)|p, |fj(0)− fj(pnj+1)|p}
6 max{|p|n1+···+nj

p , |p|nj+1
p }

= |p|n1+···+nj
p = |gj(pnj+1)|p,

where the second inequality is by (7.1) and (7.2). It follows immediately that |cj |p 6 1, as claimed.

Clearly, fj+1(pni) = ni for all i= 1, . . . , j + 1. Because cj ∈ Zp, we obtain that fj+1 ∈ Zp[z],
completing the induction. In fact, because (for any fixed m > 0) the size of the zm-coefficient
of gj goes to zero as j→∞, it follows that limj→∞ fj converges coefficient-wise to some power
series f ∈ Zp[[z]]. Because every fj also lies in Zp[[z]], it follows that the convergence fj → f is
uniform on pZp. Hence, f(pni) = ni for all i > 1, as desired. 2
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