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Abstract. If K is a number field and ϕ : P1
K −→ P1

K is a rational map
of degree d > 1, then at each place v of K, one can associate to ϕ a
generalized Mahler measure for polynomials F ∈ K[t]. These Mahler
measures give rise to a formula for the canonical height hϕ(β) of an

element β ∈ K; this formula generalizes Mahler’s formula for the usual
Weil height h(β). In this paper, we use diophantine approximation to
show that the generalized Mahler measure of a polynomial F at a place
v can be computed by averaging log |F |v over the periodic points of ϕ.

This paper is dedicated to the memory of Serge Lang, who taught the world
number theory for more than fifty years, through his research, lectures, and

books.

The usual Weil height of a rational number x/y, where x and y are integers
without a common prime factor, is defined as

h(x/y) = log max(|x|, |y|).
More generally, one can define the usual Weil height h(β) of an algebraic
number β in a number field K by summing log max(|β|v, |1|) over all of the
absolute values v of K. Mahler ([Mah60]) has proven that if F is a nonzero
irreducible polynomial in Z[t] with coprime coefficients such that F (β) = 0,
then

(0.0.1) deg(F )h(β) =
∫ 1

0
log |F (e2πiθ)|dθ.

The quantity
∫ 1
0 log |F (e2πiθ)|dθ is often referred to as the Mahler measure

of F .
It is easy to see that h(β2) = 2h(β) for any algebraic number β. Similarly,

it is easy to check that for any continuous function g on the unit circle, we
have ∫ 1

0
g((e2πiθ)2)dθ =

∫ 1

0
g(e2πiθ)dθ.
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Furthermore, the unit circle is the Julia set of ϕ. Thus, Mahler’s formula
says that one obtains the height of an algebraic number by integrating its
minimal polynomial against the unique measure µ such that ϕ∗µ = µ and
µ is supported on the Julia set of ϕ.

Now, let ϕ : P1
C −→ P1

C be any nonconstant rational map. Brolin ([Bro65])
and Lyubich ([Lyu83]) have constructed a totally ϕ-invariant probability
measure µϕ (that is, we have ϕ∗µ and ϕ∗µ) with support on the Julia set of
ϕ; Freire, Lopes, and Mañe ([FLM83]) have demonstrated that this measure
is the unique totally ϕ-invariant probability measure with support on the
Julia set of ϕ. When ϕ is defined over a number field K, Call and Silverman
([CS93]) have constructed a height function hϕ with the properties that: (1)
hϕ(ϕ(x)) = (degϕ)hϕ(x) and (2) there is a constant Cϕ such that |h(x) −
hϕ(x)| < Cϕ for all x ∈ P1(K). In [PST04], it is shown that Mahler’s
formula (0.0.1) generalizes to the adelic formula

(0.0.2) (degF )hϕ(x) =
∑

places v of K

∫
P1(Cv)

log |F |v dµϕ,v,

where β is an algebraic point, F is a nonzero irreducible polynomial in Q[t]
such that F (β) = 0, the measure µϕ,v at an archimedean place is the totally
ϕ-invariant probability measure constructed by Brolin and Lyubich, and the
integral

∫
P1(Cv) log |F |v dµϕ,v at a finite place v is defined so that its value is

the v-adic analog of the value at an archimedean place (note that as defined
in [PST04], these are not integrals per se). Favre and Rivera-Letelier have
also given a proof of 0.0.2, using actual integrals on Berkovich spaces; Piñeiro
([Piñ05]) and Chambert-Loir and Thuillier ([CLT04, Thu06]) have recently
proven higher-dimensional generalizations of 0.0.2.

Lyubich [Lyu83] has also proven that for any continuous function g and
any archimedean place v, the integrals

∫
P1(Cv) g dµϕ,v can be computed by

averaging g on the periodic points of ϕ; that is to say,

(0.0.3) lim
k→∞

1
(degϕ)k

∑
ϕk(w)=w

g(w) =
∫

P1(Cv)
g dµϕ,v.

Autissier ([Aut01]), Bilu ([Bil97]), Szpiro, Ullmo, and Zhang ([SUZ97]), and
others have obtained generalizations and variations of this result. The
most recent generalization, proven independently by Baker and Rumely
([BR06]), Chambert-Loir ([CL06]), and Favre and Rivera-Letelier ([FRL04]
and [FRL07]) states that (0.0.3) continues to hold when the periodic points
w such that ϕk(w) = w are replaced by the conjugates of any infinite non-
repeating sequence of algebraic points with height tending to 0 and when
the measure µϕ,v is the unique totally ϕ-invariant measure without point
masses on the v-adic Berkovich space (see [Ber90]) for a finite place v.

The function log |F |, for F a nonconstant polynomial, is not continuous
in general, of course. Thus, the equidistribution results cited above do not
allow us to compute Mahler measures by averaging log |F |v over points of
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small height. One can, however, show that for any β ∈ Q̄, we have

(0.0.4) [Q(β) : Q]h(β) = lim
k→∞

1
dk

∑
ξn=1

log |F (ξ)| =
∫ 1

0
log |F (e2πiθ)|dθ,

where F is a nonzero irreducible polynomial in Z[t] with coprime coefficients
such that F (β) = 0 (see [EW99, Chapter 1], [Sch74]). Everest, Ward, and
Nı́ Fhlathúin have proved similar results for maps that come from multi-
plication on an elliptic curve ([EW99, Chapter 6], [EF96]). The proofs of
these results make use of the theory of linear forms in logarithms ([Bak75],
[Dav95]), which is used to show that the periodic points of the maps in
question have strong diophantine properties. It is not clear how to apply
the theory of linear forms in logarithms in the case of more general rational
maps. In this paper, we use Roth’s Theorem ([Rot55]) from diophantine
approximation in place of the theory of linear forms in logarithms. This
allows us to work in greater generality.

0.1. Statements of the main theorems. The main results of this paper
extend (0.0.4) to a formula that holds for all rational maps. Let K be a
number field or a function field of characteristic zero, let v be a place of K,
and let ϕ : P1

K −→ P1
K be a nonconstant rational map of degree d > 1. We

prove the following equidistribution result for the periodic points of ϕ.

Theorem 4.7. For any nonzero polynomial F with coefficients in K, we
have ∫

P1(Cv)
log |F |v dµϕ,v = lim

k→∞

1
dk

∑
ϕk([w:1])=[w:1]

F (w) 6=0

log |F (w)|v.

This allows us to show that for any point β ∈ K, the canonical height
hϕ(β) can be computed by taking the average of the log of the absolute
value of a minimal polynomial for β over the periodic points of ϕ.

Theorem 4.10. For any β ∈ K and any nonzero irreducible F ∈ K[t] such
that F (β) = 0, we have

(degK)(degF )(hϕ(β)− hϕ(∞))

=
∑

places v of K

lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

F (w) 6=0

log |F (w)|v.

In both the theorems, the w are counted with multiplicity. We explain
what multiplicity means in this context in Section 1.

We are also able to prove that
∫

P1(Cv) log |F |v dµϕ,v is the limit as n goes
to infinity of the average of log |F |v on the points w for which ϕn(w) = α,
where α is an algebraic point that is not an exceptional point for ϕ. We
state this in Theorem 4.6. This enables us to prove Theorem 4.9, which is
the analog of Theorem 4.10 for the points w such that ϕn(w) = α.
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0.2. Outline of the paper. This paper is organized as follows:
1 - Notation and terminology.
2 - Brolin-Lyubich integrals and local heights.
3 - Preliminaries from diophantine approximation.
4 - Main results: 4.1 - Using Roth’s Theorem; 4.2 - Preperiodic points;

4.3 - Proofs of the main theorems.
5 - A counterexample.
6 - Applications: 6.1 - Lyapunov exponents; 6.2 - Symmetry of canonical

heights; 6.3 - Computing with points of small height.

The strategy of the proof of the main theorems is fairly simple. By additiv-
ity, it suffices to prove our results for polynomials of the form F (t) = t− β
for β ∈ K. After Section 2, we are reduced to showing that

lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

w 6=β

log |w − β|v = lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

,

(0.0.5)

where ϕk is written as

ϕk([T0 : T1]) = [Pk(T0, T1) : Qk(T0, T1)]

for coprime homogeneous polynomials Pk and Qk in the K[T0, T1]. The
points w for which ϕk(w) = w are just the solutions to the equation Pk(w, 1)−
wQk(w, 1) = 0. Thus, we get the left-hand side of (0.0.5) by taking the limit
of log |Pk(β, 1)− βQk(β, 1)|v/dk as k goes to ∞. For each k, we rewrite this
as

log |Qk(β, 1)|v
dk

+
log | Pk(β,1)

Qk(β,1) − β|v
dk

and use diophantine approximation to show that the second term in the
equation above usually goes to 0 as k →∞; our theorems then follow after
a bit of calculation. The diophantine approximation result we use is Roth’s
Theorem, which we state in Section 3 as Theorem 3.1. We use Roth’s
Theorem to derive Lemma 4.2, which is the key lemma in our proofs of the
main theorems. The idea for the proof of Lemma 4.2 comes from Siegel’s
famous paper [Sie29]. We should note that after writing this paper we
discovered that Silverman ([Sil93]) has used methods very similar to those
found here at the beginning of Section 4; we require a slight modification of
his results along these lines, however, so we present the necessary argument
here in full.

Propositions 4.4 and 4.5 deal with the additional complications that may
arise when the β in (0.0.5) is preperiodic. These complications are overcome
with somewhat lengthy – but essentially basic – calculations that are very
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similar to some of the computations carried out by Morton and Silverman
in [MS95].

In Section 5, we construct a simple counterexample that shows that The-
orem 4.7 will not hold in general when the polynomial F does not have
algebraic coefficients (it is likely that the theorem will also fail if the point
α is not algebraic). We construct a transcendental number β such that the
limit limk→∞

1
2k

∑
ξ2k=1

log |ξ − β| does not exist. This means that there is
no way to prove the main results of this paper without using some special
properties of algebraic numbers.

Acknowledgments. We would like to thank M. Baker, A. Chambert-Loir,
L. DeMarco, R. Rumely, and S. Zhang for many helpful conversations. In
particular, we thank M. Baker, L. DeMarco, and R. Rumely for suggesting
some of the applications mentioned in Section 6. 6.

1. Notation and terminology

We fix the following notation:

• K is a number field or a function field of characteristic 0 (by function
field we mean a finite algebraic extension of a field of the form
Kcons(T ) where Kcons is algebraically closed in K);

• v is a place of K;
• Kv is the completion of K at v;
• Cv is the completion of an algebraic closure of Kv at v;
• K is the algebraic closure of K in Cv (note that this means that v

extends to all of K);
• nv = [Kv : Qv] if K is a number field;
• nv = 1 if K is a function field;
• degK = [K : Q] if K is a number field;
• degK = 1 if K is a function field.

We let | · |v be an absolute value on Cv corresponding to v. When K is a
function field and πv generates the maximal prime Mv in the local ring ov
corresponding to v, we specify that

|πv|v = e−[(ov/Mv):Kcons],

where Kcons is the field of constants in K. When K is a number field and v
is nonarchimedean, we normalize | · |v so that

|p|v = p−nv

when v lies over p. When K is a number field and v is archimedean we
normalize so that | · |v = | · |nv on Q, where | · | is the usual archimedean
absolute value on Q.

Throughout this paper, we will work with a nonconstant morphism ϕ :
P1
K −→ P1

K of degree d > 1. We choose homogeneous polynomials P,Q ∈
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K[T0, T1] of degree d without a common factor along with a coordinate
system [s : t] for P1

K
such that

ϕ([T0 : T1]) = [P (T0, T1) : Q(T0, T1)],

where P and Q have no common zero in P1(K). We let P1 = P and Q1 = Q,
and for k ≥ 2 we define Pk and Qk recursively by

Pk(T0, T1) = Pk−1(P (T0, T1), Q(T0, T1))

and
Qk(T0, T1) = Qk−1(P (T0, T1), Q(T0, T1)).

Having chosen coordinates, we can define the usual Weil height as

h([a : b]) =
1

degK

∑
places v of K

log max(|a|v, |b|v)

when a, b ∈ K. When a and b lie in an extension L of K, this definition
extends to

(1.0.6) h([a : b]) =
1

[L : K](degK)

∑
places w of L

[Lw : Kv] log max(|a|w, |b|w),

where Lw is the completion of L at w and the absolute value | · |w restricts
to some | · |v on K.

As in [CS93], we define the canonical height hϕ as

(1.0.7) hϕ([a : b]) = lim
k→∞

h(ϕk([a : b]))
dk

.

We say that α ∈ P1(K) is a periodic point for ϕ if there exists a positive
integer n such that ϕn(α) = α. If α is periodic, we define the period of α
to be the smallest positive integer ` such that ϕ`(α) = α. We say that α is
preperiodic if there exists a positive integer n such that ϕn(α) is periodic.

We will use a small amount of the theory of dynamics on the projective
plane; for a more thorough account of the subject, we refer the reader to
Milnor’s ([Mil99]) and Beardon’s ([Bea91]) books on the subject. We say
that α ∈ P1(K) is an exceptional point for ϕ if ϕ2(α) = α and ϕ2 is totally
ramified at α. This is equivalent to saying that the set

⋃∞
k=1(ϕ

k)−1(α) is
finite (see [Bea91, Chapter 4.1]). If α is exceptional, then at each place v,
there is a maximal v-adically open set U containing α such that the sequence
(ϕ`k(β))k converges to α for each β ∈ U , where ` is the period of α (which
is either 1 or 2). We call U the attracting basin of α (see [Bea91, Chapter
6.3], which uses the terminology “local basin”).

We always count points with multiplicities in this paper. The multiplicity
of a point [z : 1] in the multi-set {w | ϕk(w) = w} is the highest power of
t− z that divides the polynomial Pk(t, 1)− tQk(t, 1). The multiplicity of a
point [z : 1] in the multi-set {w | ϕk(w) = [s : u]} is the highest power of
t− z that divides the polynomial uPk(t, 1)− sQk(t, 1) (here s, u, and z are
taken to be elements of K, while t is taken to be a variable).
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We note that everything done in this paper depends upon our choice of
coordinates. In particular, our integrals are closely related to the canonical
local heights (see [CG97]) for the point [1 : 0] at infinitely, so our choice of
the point at infinity affects all of our integrals. To emphasize the fact that
we treat [1 : 0] as the point at infinity, we denote it as ∞ where appropriate.

2. Brolin-Lyubich integrals and local heights

We will work with the limits

(2.0.8) lim
k→∞

log max(|Pk(a, b)|v, |Qk(a, b)|v)
dk

for (a, b) ∈ Cv \ {(0, 0)}. For a proof that these limits exist, see [PST04],
[BR06], or [CG97] (the proof is essentially an exercise in using telescoping
sums and geometric series). Note that Call and Goldstine ([CG97, Theorem
3.1]) have shown that

ĥϕ,v([β : 1]) = lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

is the unique Weil function for [1 : 0] at v (see [Lan83, Chapter 10] for a
definition of Weil functions) that satisfies

ĥϕ,v(ϕ([a : b])) = dĥϕ,v([a : b]) + log
∣∣∣Q(a

b
, 1
)∣∣∣
v
,

for any [a : b] 6= [1 : 0] (see [CG97, Theorem 2.1]). The function ĥϕ,v(·) is
called a canonical local height for ϕ. We also note that these local heights
can also be constructed by taking a quantity obtained from the “Fubini-
Study” metric and passing to the limit; specifically, the limit in (2.0.8) is
also equal to

(2.0.9) lim
k→∞

log
√
|Pk(a, b)|2v + |Qk(a, b)|v)2

dk
.

The equality follows from the uniqueness of the Call-Goldstine local height
or from the arguments in [Zha95, Section 2]. Note that Baker and Rumely
([BR06]) use (2.0.9) to form local heights.

As noted in the introduction, Brolin [Bro65] and Lyubich [Lyu83] have
constructed a totally ϕ-invariant measure µϕ,v with support on the Julia set
of ϕ, when v is an infinite place (see also [FLM83]). More recently, Baker and
Rumely ([BR06]), Chambert-Loir ([CL06]), and Favre and Rivera-Letelier
([FRL04] and [FRL07]) have constructed a ϕ-invariant measure µϕ,v on the
Berkovich space associated to P1(Cv); this measure is unique among ϕ-
invariant measures without point masses the Berkovich space associated to
P1(Cv).
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Proposition 2.1. Let v be a place of a number field K and let F (t) = t−β
for β ∈ Cv. Then∫

P1(Cv)
log |F |vdµϕ,v = lim

k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.

(2.1.1)

Proof. We will prove this following the methods of Baker and Rumely, who
show that the measures µϕ,v are Laplacians of local height functions. The
proposition could also be proved using the work of Favre and Rivera-Letelier
([FRL07]) or Chambert-Loir and Thuillier ([CLT04, Thu06]), who proved
more general Mahler formulas (but do not formulate them in terms of limits
such as (2.0.8)). In [BR06], Baker and Rumely show that for w ∈ Cv, the
function Hw defined by

Hw([a : b]) = − log(wb− a) + lim
k→∞

log
√
|Pk(a, b)|2v + |Qk(a, b)|v)2

dk

is subharmonic on P1(Cv) \ {[w : 1]} (see [BR06, BR04]). Furthermore,
they show that if ∆ is the distributional Laplacian (i.e. −ddc considered in
the distributional sense, which can be extended to the setting of Berkovich
spaces as described in [BR04]), then

(2.1.2)
1

nvp(v)
∆Hw = −µϕ,v + δw

where δw is the usual Dirac point mass at w and p(v) is the log of the
characteristic of the residue field of v when v nonarchimedean, and is simply
1 when v is archimedean. Similarly, we have

1
nvp(v)

∆ log |t− β|v = δ[1:0] − δβ

(see [FRL07, Section 5.1] or the same reasoning that gives (2.1.2)). Now,
since log |t − β|v and Hw are both subharmonic on P1(Cv) \ {[1 : 0], [w :
1], [β : 1]} we have

∫
P1(Cv)

log |t− β|vdµϕ,v =

(∫
P1(Cv)

log |t− β|v
(
− 1
nvp(v)

∆Hw

))
+ log |w − β|v

=

(∫
P1(Cv)

Hw

(
− 1
nvp(v)

∆ log |t− β|v
))

+ log |w − β|v

= Hw([β : 1])−Hw([1 : 0]) + log |w − β|v

(2.1.3)
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Since (2.0.8) and (2.0.9) are equal by the discussion above, (4.6.3) becomes

− log |w − β|v + lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

+ log |1|

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

+ log |w − β|v

= lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

,

as desired. �

Note that although our integrals are defined for points in Cv, the results
we prove in Section 4 only apply to points in K. Note as well that we make
no use of the fact that our limits correspond to actual integrals, either in
the proofs of our main theorems or in the applications in Section 6.

When K is a function field, it should also be possible to construct suitable
integrals at the places of K. Since this has not yet been done, however, we
will have to make do with a definition rather than a proof.

Definition 2.2. Let v be a place of a function field K and let F (t) = t− β
for β ∈ Cv. Then∫

P1(Cv)
log |F |vdµϕ,v = lim

k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.

3. Preliminaries from diophantine approximation

The following well-known theorem of Roth ([Rot55]) is the principal tool
from diophantine approximation that is used in this paper.

Theorem 3.1. (Roth). If α ∈ C is algebraic over Q, then for any ε > 0,
there is a constant C such that∣∣∣α− a

b

∣∣∣ > C

|b|2+ε
,

for all a/b ∈ Q such that a/b 6= α.

We will need to work in slightly greater generality. In the terminology of
the previous section, Roth’s admits the following generalization (see [Lan83,
Theorem 7.1.1]), which holds when K is number field or a function fields of
characteristic 0.

Theorem 3.2. Let α1, . . . , αn be elements of K and let L ⊂ K be a finite
extension of K. Then, for any ε > 0 and any places v of K and w of L such
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that w|v, we have

1
[L : K](degK)

n∑
i=1

max(0,− log |αi − β|[Lw:Kv ]nv
v ) ≤ (2 + ε)h(β) +O(1),

for all β ∈ L not in the set {α1, . . . , αn}.

Let [a : 1] be a point in P1(K). Then for any [b : 1] 6= [a : 1] in P1(Cv),
we let

λ[a:1],v([b : 1]) = max(− log |b− a|v, 0).

We extend this definition to the point at [1 : 0] by letting

λ[a:1],v([1 : 0]) = 0.

and

(3.2.1) λ[1:0],v([b : 1]) = max(0, log |b|v).

We will work with divisors on P1
K

rather than elements of K. Let D =∑n
i=1miαi, where αi ∈ P1(K) and mi ∈ Z. We let

λD,v(β) =
∑

miλαi,v(β)

for points β ∈ P1(Cv) that are not in SuppD. Then λD,v is a Weil function
for D at v as defined in [Lan83, Chapter 10]. It is easy to check that for any
divisor D and any rational map ϕ on P1, we have

(3.2.2) λD,v(ϕ(β)) = λϕ∗D,v(β) +O(1),

for all β ∈ P1(K) away from the support of D and ϕ∗D. This is a general
functorial property of Weil functions, as explained in [Lan83, Chapter 10].

For a divisor D =
∑n

i=1miαi, where αi ∈ P1(K), we define

r(D) = max
i

(mi).

With this terminology, it follows from Theorem 3.2 that for any ε > 0, any
finite extension L of K, and any positive divisor D on P1(K) with r(D) = 1,
we have

1
[L : K](degK)

λD,v(β) ≤ (2 + ε)h(β) +O(1)

for all β ∈ P1(L) away from the support of D. Hence, for any positive divisor
D we have

(3.2.3)
1

[L : K](degK)
λD,v(β) ≤ r(D)(2 + ε)h(β) +O(1).
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4. Main results

We begin with a simple Lemma on how r((ϕn)∗(D) behaves as n → ∞
when D is a divisor that does not contain an exceptional point of ϕ. We
recall that in general if D =

∑n
i=1miαi is a divisor on P1 and ψ : P1 −→ P1

is a nonconstant rational map, then

(4.0.4) ψ∗D =
n∑
i=1

∑
ψ(βi)=αi

mie(βi/αi)βi

where e(βi/αi) is the ramification index of ψ at βi.

Lemma 4.1. Let D be a divisor such that SuppD does not contain any
exceptional points of ϕ. Then limk→∞

r((ϕk)∗D)
dk = 0.

Proof. Recall that α is an exceptional point if and only if ϕ2(α) = α and
ϕ is totally ramified at both α and ϕ(α). Since ϕ has at most two totally
ramified points, it follows that if α is not exceptional, then one of α, ϕ(α),
and ϕ2(α) is not a totally ramified point of ϕ. Since the degree of ϕ3 is
d3, this means that for any divisor E such that SuppE does not contain an
exceptional point, we have r((ϕ3)∗E) < d3r(E) (by (4.0.4)), so r((ϕ3)∗E) ≤
d2(d − 1)r(E) Now, since SuppD does not contain an exceptional point,
Supp(ϕk)∗D does not contain an exceptional point for any k. Thus, for any
k ≥ 3, we see that r((ϕk)∗D)

dk is less than or equal to ((d− 1)/d)(k−2)/3r(D),
which goes to zero as k goes to infinity. �

4.1. Using Roth’s Theorem. Roth’s Theorem allows us to prove the fol-
lowing lemma. The idea of the proof is that if ϕk+`(β) approximates D
very closely, then ϕk(β) approximates (ϕ`)∗D very closely. Since ϕk(β) has
height approximately equal to 1/d` times the height of ϕk+`(β), this makes
h(ϕk(β)) small relative to λ(ϕ`)∗D(β). Repeating this for infinitely many
ϕk(β) gives a contradiction to Roth’s Theorem. This idea is due to Siegel
([Sie29]); similar arguments can be found in [Sil93].

Lemma 4.2. Let D be a positive divisor on P1 such that SuppD does not
contain any of the exceptional points of ϕ. Let β be a point in P1(K) for
which there is a strictly increasing sequence of integers (ei)∞i=1 such that
ϕei(β) /∈ SuppD. Then

(4.2.1) lim
i→∞

λD,v(ϕei(β))
dei

= 0.

Proof. Let L be a finite extension of K for which β ∈ P1(L). Choose δ > 0.
By Lemma 4.1, we may pick an integer ` such that r((ϕ`)∗D)

d` < δ/2. We

may then write r((ϕ`)∗D)(2+ε)
d` = δ for some ε > 0. For any ei, we have

ϕei−`(β) /∈ Supp(ϕ`)∗D since ϕei(β) /∈ SuppD. Thus, applying Roth’s
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Theorem (as expressed in (3.2.3)), we find that for all ei we have
1

[L : K](degK)
λ(ϕ`)∗D,v(ϕ

ei−`(β)) ≤ r((ϕ`)∗D)(2 + ε)h(ϕei−`(β)) +O(1).

Using (3.2.2) and the fact that h(ϕei(β)) ≤ d`hϕ(ϕei−`(β)) +O(1), we then
obtain

1
[L : K](degK)

λD,v(ϕei(β)) ≤ 1
[L : K](degK)

λ(ϕ`)∗D,v(ϕ
ei−`(β)) +O(1)

≤ r((ϕ`)∗D)(2 + ε)h(ϕei−`(β)) +O(1)

≤ r((ϕ`)∗D)(2 + ε)
d`

h(ϕei(β)) +O(1)

≤ δh(ϕei(β)) +O(1)

≤ δdeih(β) +O(1).

Dividing through by dei gives

lim
i→∞

sup
λD,v(ϕei(β))

dei
≤ [L : K](degK)δh(β).

Since λD,v(ϕei(β)) ≥ 0, letting δ go to zero gives (4.2.1), as desired. �

This allows us to prove the following Proposition, which will be used to
prove Theorems 4.6 and 4.7.

Proposition 4.3. Let α = [s : u] be a nonexceptional point in P1(K). Then
for any point β = [a : b] in P1(K) and any strictly increasing sequence of
integers (ei)∞i=1 such that ϕei(β) 6= α, we have

lim
i→∞

log |uPei(a, b)− sQei(a, b)|v
dei

= lim
i→∞

log max(|Pei(a, b)|v, |Qei(a, b)|v)
dei

.

Proof. Note that we know that the the limit on the right-hand side of the
equation above exists by the discussion at the beginning of Section 2.

If [1 : 0] is an exceptional point of ϕ, let U be its attracting basin; if [1 : 0]
is not exceptional, let U simply equal {[1 : 0]}. We will divide (ei)∞i=1 into
two subsequences: one consisting of the ei for which ϕei(β) /∈ U and one
consisting of the remaining integers in the sequence (ei)∞i=1. Let (`j)∞j=1 be
the subsequence consisting of all integers `j in (ei)∞i=1 such that ϕ`j (β) /∈ U
(this subsequence may be empty). We have

lim
j→∞

max(log |P`j (a, b)/Q`j (a, b)|v, 0)
d`j

= 0.(4.3.1)

If [1 : 0] is not exceptional, this follows from Lemma 4.2 applied to D = [1 :
0], along with (3.2.1). If [1 : 0] is exceptional, the fact that ϕ`j (β) /∈ U for
all j implies that |P`j (a, b)/Q`j (a, b)|v is bounded for all j, so (4.3.1) clearly
holds. It follows immediately from (4.3.1) that

(4.3.2) lim
j→∞

log max(|P`j (a, b)|v, |Q`j (a, b)|v)
d`j

= lim
j→∞

log |Q`j (a, b)|v
d`j

.
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Note that if u = 0, then

uP`j (a, b)− sQ`j (a, b) = sQ`j (a, b),

so we are done. Otherwise, by Lemma 4.2, we have

lim
j→∞

max
(

0,− log
∣∣∣∣ P`j

(a,b)

Q`j
(a,b) −

s
u

∣∣∣∣
v

)
d`j

= 0.

Combining this with (4.3.1), we see that

lim
j→∞

log
∣∣∣∣ P`j

(a,b)

Q`j
(a,b) −

s
u

∣∣∣∣
v

d`j
= 0.

Thus, using (4.3.2), we obtain

lim
j→∞

log |uP`j (a, b)− sQ`j (a, b)|v
d`j

= lim
j→∞

log
(
|Q`j (a, b)|v|u|v

∣∣∣∣ P`j
(a,b)

Q`j
(a,b) −

s
u

∣∣∣∣
v

)
d`j

= lim
j→∞

log |Q`j (a, b)|v
d`j

+ lim
j→∞

log
∣∣∣∣ P`j

(a,b)

Q`j
(a,b) −

s
u

∣∣∣∣
v

d`j

= lim
j→∞

log max(|P`j (a, b)|v, |Q`j (a, b)|v)
d`j

,

as desired.
Now, let (mj)∞j=1 be be the subsequence of (ei)∞i=1 consisting of all integers

mj in (ei)∞i=1 such that ϕmj (β) ∈ U (this subsequence may also be empty).
If α = [1 : 0], then [1 : 0] is not exceptional by assumption, so there are no
mj and we are done. Otherwise, we have

lim
j→∞

|sQmj (a, b)|v
|uPmj (a, b)|v

= 0,

since
Pmj (a,b)

Qmj (a,b) goes to infinity and u 6= 0. This implies that

lim
j→∞

log |uPmj (a, b)− sQmj (a, b)|v
dmj

= lim
j→∞

log |uPmj (a, b)|v
dmj

= lim
j→∞

log max(|Pmj (a, b)|v, |Qmj (a, b)|v))
dmj

.

Since every element of the sequence (ei)∞i=1 is in (`j)∞j=1 or (mj)∞j=1, this
completes our proof. �
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4.2. Preperiodic points. Proposition 4.3 provides all the information we
need when ϕk([a : b]) = [s : u] for at most finitely many k; this will always
be the case when [s : u] is not preperiodic. When [s : u] is preperiodic,
however, there may be infinitely many k such that ϕk([a : b]) = [s : u]. New
complications arise when this is the case; we treat these complications in
Propositions 4.4 and 4.5.

Suppose that (bT0−aT1)wk is the highest power of (bT0−aT1) that divides
uPk(T0, T1)− sQk(T0, T1) in K[T0, T1]. We write

uPk(T0, T1)− sQk(T0, T1) = (bT0 − aT1)wkGk(T0, T1)

where Gk is a polynomial in K[T0, T1] such that Gk(a, b) 6= 0.

Proposition 4.4. Let [s : u] be a nonexceptional point of ϕ. Then, with
notation as above, we have

(4.4.1) lim
k→∞

log |Gk(a, b)|v
dk

= lim
k→∞

log max(|Pk(a, b)|v, |Qk(a, b)|v)
dk

.

Proof. By Proposition 4.3, equation (4.4.1) holds if we restrict to the k
for which ϕk([a : b]) 6= α. If there are only finitely many k such that
ϕk([a : b]) = α, we are therefore done. Otherwise, let j be the smallest
positive integer such that ϕj([β : 1]) = α and let ` be the period of α. Then
ϕk([β : 1]) = α precisely when k is of the form j+m` for some integer m ≥ 0.
If ϕ`([s : u]) = [s : u], then uT0 − sT1 divides uP`(T0, T1)− sQ`(T0, T1).

Suppose that u 6= 0. Then, expanding Q` out in the variables uT0 − sT1

and T1, we see that since uT0 − sT1 cannot divide Q`(T0, T1) (because if it
did, then it would also divide P`(T0, T1) and we know that Q` and P` have
no factors), we have

Q`(T0, T1) = g0T
d`

1 + (uT0 − sT1)W (T0, T1)

for some nonzero g0 ∈ K and some W (T0, T1) ∈ K[T0, T1]. For any m ≥ 1
we thus have

Qm` = g0(Q(m−1)`)
d`

+ (uP(m−1)` − sQ(m−1)`)W (P(m−1)`, Q(m−1)`).

Using induction, we see then that

(4.4.2) Qm`(T0, T1) = g
Pm−1

i=0 di`

0 T d
m`

1 + (uT0 − sT1)Wm(T0, T1),

for some polynomial Wm(T0, T1) ∈ K[T0, T1]. Similarly, we may write

uP`(T0, T1)− sQ`(T0, T1)

= (uT0 − sT1)rfrT d−r1 + (uT0 − sT1)r+1V (T0, T1),
(4.4.3)

for some nonzero fr ∈ K, some integer r > 0, and some V (T0, T1) in
K[T0, T1]. Since [s : u] is not an exceptional point of ϕ, we have r < d`

(note that if r were to equal to d`, then ϕ would have to ramify totally at
ϕ([s : u]), . . . , ϕ`[s : u], which would imply that ` = 2 and that [s : u] is



EQUIDISTRIBUTION AND GENERALIZED MAHLER MEASURES 15

therefore an exceptional point, as explained in Section 1). Then for any m,
we have

uPm` − sQm` = (uP(m−1)` − sQ(m−1)`)
rfrQ

d−r
(m−1)`

+ (P(m−1)` − sQ(m−1)`)
r+1V (P(m−1)`, Q(m−1)`),

so, using (4.4.2), (4.4.3), and induction, we obtain

uPm`(T0, T1)− sQm`(T0, T1)

= (uT0 − sT1)r
m
f
Pm−1

i=0 ri

r T d
m`−rm

1 g
Pm−1

i=0 (di`−ri)
0

+ (uT0 − sT1)r
m+1Zm(T0, T1),

(4.4.4)

for Zm a polynomial in K[T0, T1]. Since r < d`, we have

lim
m→∞

log |f
Pm−1

i=0 ri

r g
Pm−1

i=0 (di`−ri)
0 |v

dm`
= lim

m→∞

log |g
Pm−1

i=0 di`

0 |v
dm`

=
log |g0|v
d` − 1

.

Now, let ε be the highest power of aT0−bT1 that divides uPj−sQj . Using
(4.4.4), we see that we have

uPj+m`(T0, T1)− sQj+m`(T0, T1) = (bT0 − aT1)εr
m
Gj+m`(T0, T1)

for a polynomial Gj+m` ∈ K[T0, T1]. Letting m go to infinity, we see from
(4.4.4) that

lim
m→∞

log |Gj+m`(a, b)|v
dj+m`

=
log |g0|v
dj(d` − 1)

+
log |Qj(a, b)|v

dj
.

Similarly, (4.4.2) yields

lim
m→∞

log |Qj+m`(a, b)|v
dj+m`

=
log |g0|v
dj(d` − 1)

+
log |Qj(a, b)|v

dj
.

Moreover, since uPj+m`(a, b) = sQj+m`(a, b) for every m, we have

lim
m→∞

log |Pj+m`(a, b)|v
dj+m`

= lim
m→∞

log |Qj+m`(a, b)|v
dj+m`

.

Hence

lim
m→∞

log |Gj+m`(a, b)|v
dj+m`

= lim
m→∞

log max(|Pj+m`(a, b)|v, |Qj+m`(a, b)|v)
dj+m`

,

which completes our proof in the case u 6= 0. The proof in the case u = 0
proceeds in exactly the same way, using T0 in place of T1.

�

We have a similar result for the polynomials T0Pk − T1Qk. We write

T0Pk(T0, T1)− T1Qk(T0, T1) = (bT0 − aT1)nkHk(T0, T1)

where Hk is a polynomial in K[T0, T1] such that Hk(a, b) 6= 0. The proof
of the following proposition is similar to Morton’s and Silverman’s proof of
[MS95, Lemma 3.4], but it requires a bit more detail since it yields informa-
tion about Hk(a, b) as well as nk.
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Proposition 4.5. With notation as above, we have

(4.5.1) lim
k→∞

log |Hk(a, b)|v
dk

= lim
k→∞

log max(|Pk(a, b)|v, |Qk(a, b)|v)
dk

.

Furthermore, nk remains bounded as k goes to infinity.

Proof. If (ei)∞i=1 is a strictly increasing sequence of integers such that ϕei([a :
b]) 6= [a : b] for each ei, then

Hei(T0, T1) = T0Pei(T0, T1)− T1Qei(T0, T1)

for all ei. Hence, by Proposition 4.3, we

lim
i→∞

log |Hei(a, b)|v
dei

= lim
i→∞

log max(|Pei(a, b)|v, |Qei(a, b)|v)
dei

.

If [a : b] is not periodic, this finishes the proof. Thus, we may assume that
[a : b] is periodic. The rest of the proof is a computation. We divide it into
three steps.

Step I. We begin by changing variables so that [a : b] becomes [0 : 1].
If b = 0, we write U0 = T1/a and U1 = −T0. We then let

R(U0, U1) =
1
a
Q(T0, T1)

and
S(U0, U1) = −P (T0, T1)

(this is simply the inverse of the transformation we defined on T0 and T1

– our change of variables is obtained by conjugation by a change-of-basis
matrix). If b 6= 0, we write U1 = 1

bT1 and

U0 = bT0 − aT1.

We then let S(U0, U1) = Q(T0, T1)/b and

R(U0, U1) = bP (T0, T1)− aQ(T0, T1).

We define Rk and Sk recursively by letting R1 = R, S1 = S, and setting

Rk+1(U0, U1) = Rk(R(U0, U1), S(U0, U1))

and
Sk+1(U0, U1) = Sk(R(U0, U1), S(U0, U1)).

By the construction of our change of variables, we have

(4.5.2) U1Rk(U0, U1)− U0Sk(U0, U1) = T0Pk(T0, T1)− T1Qk(T0, T1)

as polynomials in T0 and T1. Hence, if Unk
0 is the highest power of U0

that divides U1Rk(U0, U1) − U0Sk(U0, U1) and τk is the coefficient of the
Unk

0 Ud
k−nk

1 term in U1Rk(U0, U1)− U0Sk(U0, U1), then

τk = Hk(a, b).
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Now, let ` be the smallest positive integer for which ϕ`([a : b]) = [a : b].
Note that |Sm`(1, 0)|v = |Qm`(a,b)|v

|b|v if b 6= 0 and |Sm`(1, 0)|v = |Pm`(a, b)|v/|a|v
otherwise. Since

[Pm`(a, b) : Qm`(a, b)] = [a : b]
for every m, it follows that

lim
m→∞

log |Sm`(0, 1)|v
dm`

= lim
m→∞

log max(|Pm`(a, b)|v, |Qm`(a, b)|v)
dm`

.

Thus, it will suffice to show that

(4.5.3) lim
m→∞

log |τm`|v
dm`

= lim
m→∞

log |Sm`(0, 1)|v
dm`

.

We write

R`(U0, U1) =
d`∑
i=1

fiU
i
0U

d`−i
1

(note that U0 divides R` by our change of variables) and

S`(U0, U1) =
d`∑
i=0

giU
i
0U

d`−i
1 .

Using induction, we see that

Rm`(U0, U1) ≡ fm1 g
(
Pm−1

j=0 dj`)−m
0 U0U

dm`−1
1 (mod U2

0 )

and
Sm`(U0, U1) ≡ g

Pm−1
j=0 dj`

0 Ud
m`

1 (mod U2
0 ).

Thus, we have
U1Rm`(U0, U1)− U0Sm`(U0, U1)

≡ g
Pm−1

j=0 dj`

0 ((f1/g0)m − 1)U0U
dm`

1 (mod U2
0 ).

(4.5.4)

Step II. We will now treat the m for which (f1/g0)m 6= 1 We have

| log |(f1/g0)m − 1|v ≤ h((f1/g0)m − 1) ≤ 2m[K(f1/g0) : K]h(f1/g0)

for all m such that (f1/g0)m 6= 1 (this is a simple version of Liouville’s
theorem), so

lim
m→∞

(f1/g0)m 6=1

log |(f1/g0)m − 1|v
dm`

= 0.

Thus, dividing (4.5.4) through by U0, we obtain

lim
m→∞

(f1/g0)m 6=1

log |τm`|v
dm`

= lim
m→∞

log |g
Pm−1

j=0 dj`

0 |v
dm`

= lim
m→∞

log |Sm`(0, 1)|v
dm`

,

as desired.

Step III. We are left with treating the m for which (f1/g0)m = 1. Let ρ be



18 L. SZPIRO AND T. J. TUCKER

the smallest positive integer m such that (f1/g0)m = 1 and write ω = ρ`.
For q ≥ 1 we write

Rqω(U0, U1) =
dqω∑
i=1

x
[q]
i U

i
0U

dqω−i
1

(the summation starts at 1 since U0 divides Rqω) and

Sqω(U0, U1) =
dqω∑
i=0

y
[q]
i U

i
0U

dqω−i
1 .

Since fρ1 = gρ0 by assumption, we have y[1]
0 = x

[1]
1 by (4.5.4). Multiplying

Rω and Sω through by a constant will change all of the limits we are calcu-
lating by the same fixed amount, so we may assume that y[1]

0 = x
[1]
1 = 1. Let

r be the smallest integer greater than 0 such that x[1]
r 6= y

[1]
r−1 (we have r ≥ 2

since (f1/g0)m = 1). Then U r0 divides U1Rω − U0Sω, which in turn divides
U1Rqω − U0Sqω for any q; hence U r0 divides U1Rqω − U0Sqω for every q, so
x

[q]
j = y

[q]
j−1 for j < r. To calculate x[q]

r − y
[q]
r−1, we introduce some notation:

we let (
M∑
i=0

tiU
i
0U

M−i
1

)
j

= tj

for any polynomial
∑M

i=0 tiU
i
0U

M−i
1 . We have

x[q]
r − y

[q]
r−1

=
r∑
i=1

x
[q−1]
i

(
(Rω)i(Sω)d

(q−1)ω−i
)
r
−

r−1∑
j=0

y
[q−1]
j

(
(Rω)j(Sω)d

(q−1)ω−j
)
r−1

.

(4.5.5)

For any i < r, we have x[1]
i = y

[1]
i−1, so (U0Rω)i = (U1Sω)i. Hence, we have(

(Rω)j(Sω)d
(q−1)ω−j

)
r−1

=
(
(Rω)j+1(Sω)d

(q−1)ω−j−1
)
r

for j > 0. For j = 0, we have(
Sd

(q−1)ω

ω

)
r−1

=
((
Rω + (x[1]

r − y
[1]
r−1)U

r
0U

dω−r
1

)
Sd

(q−1)ω−1
ω

)
r

=
(
RωS

d(q−1)ω−1
ω

)
r
+ (x[1]

r − y
[1]
r−1),

since y[1]
0 = x

[1]
1 = 1.
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Using equation (4.5.5), we see that

x[q]
r − y

[q]
r−1 =

r∑
i=1

x
[q−1]
i

(
(Rω)i(Sω)d

qω−i
)
r

−
r−1∑
j=0

x
[q−1]
j+1

(
(Rω)j+1(Sω)d

(q−1)ω−j−1
)
r
+ (x[1]

r − y
[1]
r−1)(x

[q−1]
1 )

+ (x[q−1]
r − y

[q−1]
r−1 )

(
(Rω)r(Sω)d

(q−1)ω−r
)
r

= (x[1]
r − y

[1]
r−1)(x

[q−1]
1 ) + (x[q−1]

r − y
[q−1]
r−1 ),

We have y
[q−1]
0 = x

[q−1]
1 = 1, since y

[1]
0 = x

[1]
1 = 1. Thus, assuming

inductively that

x[q−1]
r − y

[q−1]
r−1 = (q − 1)(x[1]

r − y
[1]
r−1),

we have

(4.5.6) x[q]
r − y

[q]
r−1 = q(x[1]

r − y
[1]
r−1).

Note in particular that nqω = r for all q, so nk is bounded for all k, as
desired.

Now,

lim
q→∞

log |q(x[1]
r − y

[1]
r−1)|v

dqω
= 0

and τqω = x
[q]
r − y

[q]
r−1. Since Sqω(1, 0) is simply y[q−1]

0 = 1, we have

lim
q→∞

log |τqω|v
dqω

= 0 = lim
q→∞

log |Sqω(0, 1)|v
dqω

,

which give us (4.5.3) and thus completes our proof.
�

4.3. Proofs of the main theorems. Now, we can show that the integral∫
P1(Cv) log |t− β|vdµϕ,v can be computed by taking the limit of the average

of log |β − w|v on the points in ϕ−k(α), as k → ∞, for any nonexceptional
point α.

Theorem 4.6. Let α = [s : u] be a nonexceptional point in P1(K). Then
for any nonzero polynomial F (t) ∈ K[t] we have∫

P1(Cv)
log |F |v dµϕ,v = lim

k→∞

1
dk

∑
ϕk([w:1])=α
F (w) 6=0

log |F (w)|v.

where the [w : 1] for which ϕk([w : 1]) = α are counted with multiplicity.
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Proof. The polynomial F factors as F (t) = γ
∏n
i=1(t − βi) where γ and

β1, . . . , βn are elements of K. For each βi, the multiplicity of βi in (ϕk)∗α
is at most r((ϕk)∗α) (where r((ϕk)∗α) is defined as in Section 3). Since α
is not exceptional, we have limk→∞

r((ϕk)∗α)
dk = 0, by Lemma 4.1. Thus,

lim
k→∞

1
dk

∑
ϕk([w:1])=α

w 6=βj

log |w − βj |v = lim
k→∞

1
dk

∑
ϕk([w:1])=α
F (w) 6=0

log |w − βj |v

for each βj . Hence, it suffices to show that

(4.6.1)
∫

P1(Cv)
log |t− β|v dµϕ,v = lim

k→∞

1
dk

∑
ϕk([w:1])=α

w 6=β

log |w − β|v

for any β ∈ K.
Note that ϕk([w : 1]) = [s : u] if and only if uPk(w, 1) − sQk(w, 1) = 0.

Thus, as polynomials in t, we have

uPk(t, 1)− sQk(t, 1) = ηk
∏

ϕk([w:1])=[s:u]

(t− w),

where ηk ∈ K. We write

uPk(t, 1)− sQk(t, 1) = (t− β)wkGk(t, 1)

for a polynomial Gk such that Gk(β, 1) 6= 0, as in Proposition 4.4. Note
that

Gk(t, 1) = ηk
∏

ϕk([w:1])=α
w 6=β

(t− w).

Plugging β in for t and taking logs of absolute values gives

(4.6.2) log |Gk(β, 1)|v = log |ηk|v +
∑

ϕk([w:1])=[s:u]
w 6=β

log |w − β|v.

Applying Proposition 4.4 therefore yields

lim
k→∞

1
dk

∑
ϕk([w:1])=α

w 6=β

log |w − β|v +
log |ηk|v
dk

= lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

.

(4.6.3)

Now, writing

uPk(T0, T1)− sQk(T0, T1) = Twk
1 Vk(T0, T1)

for some polynomial Vk such that Vk(1, 0) 6= 0, we see that ηk = Vk(1, 0).
Applying Proposition 4.4, we obtain

lim
k→∞

log |ηk|v
dk

= lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.
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Substituting this equality into (4.6.3) gives

lim
k→∞

1
dk

∑
ϕk([w:1])=α

[w:1] 6=β

log |w − β|v = lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

− lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.

(4.6.4)

Using Proposition 2.1, we obtain (4.6.1). �

Now, we show that the same result holds when we average log |β − w|v
over periodic points rather than inverse images of a point.

Theorem 4.7. For any any polynomial F ∈ K[t] we have∫
P1(Cv)

log |F |v dµϕ,v = lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

F (w) 6=0

log |F (w)|v,

where the [w : 1] for which ϕk([w : 1]) = w are counted with multiplicity.

Proof. As in the proof of Theorem 4.6, it will suffice to show that

(4.7.1)
∫

P1(Cv)
log |t− β|v dµϕ,v = lim

k→∞

1
dk

∑
ϕk([w:1])=[w:1]

w 6=β

log |w − β|v

for any β ∈ K (this follows from the fact that the multiplicity of each βi as
a k-periodic point is bounded for all k by Proposition 4.5).

We have ϕk([w : 1]) = [w : 1] if and only if Pk(w, 1) − wQk(w, 1) = 0.
Thus,

Pk(t, 1)− tQk(t, 1) = γk
∏

ϕk([w:1])=[w:1]

(t− w),

for some γk ∈ K. We write

Pk(t, 1)− tQk(t, 1) = (t− β)nkHk(t, 1)

for a polynomial Hk such that Hk(β, 1) 6= 0. We have

Hk(t, 1) = γk
∏

ϕk([w:1])=[w:1]
w 6=β

(t− w).

Then, plugging β in for t, taking logs of absolute values, and applying
Proposition 4.5 gives

lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

w 6=β

log |β − w|v +
log |γk|v
dk

= lim
k→∞

log max(|Pk(β, 1)|v, |Qk(β, 1)|v)
dk

.

(4.7.2)
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Writing
T1Pk(T0, T1)− T0Qk(T0, T1) = Tnk

1 Wk(T0, T1)

for a polynomial Wk such that Wk(1, 0) 6= 0, we see that γk = Wk(1, 0). By
Proposition 4.5, we have

lim
k→∞

log |γk|v
dk

= lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.

Combining this equality with (4.7.2) and Proposition 2.1 yields (4.7.1).
�

We are now ready to prove the results regarding the computation of the
canonical height hϕ(β). First, we’ll need a lemma. Note that the lemma
does not follow directly from the work of Call an Goldstine ([CG97]), since
they only prove that in a fixed number field, the local canonical heights sum
to the global canonical height. What is required here is slightly different.

Lemma 4.8. Let β = [a : b] in P1(K). Let [a1 : b1], . . . , [an : bn] be the
conjugates of [a : b] under the action of Gal(K/K). Then

[K(β) : K](degK)hϕ([a : b])

=
∑

places v of K

lim
k→∞

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)
dk

.

(4.8.1)

Proof. For all but finitely many v, we have |ai|v = |bi|v = 1. Furthermore,
for all but finitely many v, we have

(4.8.2) log max(|Pk(s, t)|v, |Qk(s, t)|v) = 0

for all k whenever |s|v = |t|v = 1. This is true, for example, at all nonar-
chimedean v of good reduction for ϕ in the sense of [PST04]. Indeed, when
v is a finite place, (4.8.2) will hold for all |s|v = |t|v = 1 unless either
|Res(P (T0, 1), Q(T0, 1))|v or |Res(P (1, T1), Q(1, T1))|v is less than 1, where
Res is the usual resultant of two polynomials (see [BK86, p. 279, Proposition
4]). Thus, we can interchange the limit and the sum on the right-hand side
of (4.8.1) so that

lim
k→∞

∑
places v of K

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)
dk

=
∑

places v of K

lim
k→∞

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)
dk

.

(4.8.3)

Now, let L be the field K(β) and let w be a place of L that extends the
place v of K; we write w | v. The field L has n embeddings i : L ↪→ Cv; for
exactly [Lw : Kv] of these embeddings, we have |i(x)|v = |x|w for all x ∈ L.
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This yields [Lw : Kv] conjugates [a′ : b′] of [a : b] such that |a|w = |a′|v and
|b|w = |b′|w. Hence, we see that

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)

=
∑
w|v

[Lw : Kv] log max(|Pk(a, b)|w, |Qk(a, b)|v).

Thus, we have

∑
places v of K

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)

= [K(β) : K](degK)h(ϕk([a : b])),

by (1.0.6). It follows from (1.0.7) and (4.8.3) that we therefore have

∑
places v of K

lim
k→∞

n∑
i=1

log max(|Pk(ai, bi)|v, |Qk(ai, bi)|v)
dk

= [K(β) : K](degK) lim
k→∞

h(ϕk([a : b]))
dk

= [K(β) : K](degK)hϕ([a : b]).

�

Theorem 4.9. Let α be any point in P1(K) that is not an exceptional point
of ϕ. Then, for any β ∈ K and any nonzero irreducible F ∈ K[t] such that
F (β) = 0, we have

(degK)(degF )(hϕ(β)− hϕ(∞))

=
∑

places v of K

lim
k→∞

1
dk

∑
ϕk([w:1])=α
F (w) 6=0

log |F (w)|v,

where the [w : 1] for which ϕk([w : 1]) = α are counted with multiplicity.

Proof. Write F (t) = γ
∏n
i=1(t − βi) where γ ∈ K and the βi are the conju-

gates of β under the action of Gal(K/K). By the product formula, we have∑
places v of K log |γ|v = 0. Thus, using Theorem 4.6 and Proposition 2.1, we
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see that ∑
places v of K

lim
k→∞

1
dk

∑
ϕk([w:1])=α
F (w) 6=0

log |F (w)|v

=
∑

places v of K

lim
k→∞

1
dk

∑
ϕk([w:1])=α
F (w) 6=0

log

∣∣∣∣∣
n∏
i=1

(w − βi)

∣∣∣∣∣
v

=
n∑
i=1

lim
k→∞

log max(|Pk(βi, 1)|v, |Qk(βi, 1)|v)
dk

− (degF ) lim
k→∞

log max(|Pk(1, 0)|v, |Qk(1, 0)|v)
dk

.

(4.9.1)

By Lemma 4.8, the quantity on the last two lines is equal to

(degF )(degK)(hϕ(β)− hϕ(∞)),

as desired. �

Theorem 4.10. For any β ∈ K and any nonzero irreducible F ∈ K[t] such
that F (β) = 0, we have

(degK)(degF )(hϕ(β)− hϕ(∞))

=
∑

places v of K

lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

F (w) 6=0

log |F (w)|v,

where the [w : 1] for which ϕk([w : 1]) = w are counted with multiplicity.

Proof. The proof is the same as the proof of Theorem 4.9, using Theorem
4.7 in place of Theorem 4.6. �

5. A counterexample

The main theorems of this paper are not true when we work over the
complex numbers C rather than K. Let K = Q and let ϕ([x : y]) = [x2 :
y2] be the usual squaring map. Let v be the archimedean place of Q, so
that Cv is just the usual complex numbers C. We define the function ψ
on the positive integers recursively by ψ(1) = 2 and ψ(n) = 2(nψ(n−1)).
Let α =

∑∞
n=1 1/ψ(n) and let β = e2πiα. Note that for any t, we have

|e2πit− 1| ≤ π(t− [t]), (where [t] is the greatest integer less than or equal to
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t). Letting `n = log2 ψ(n), we then have

1
2`n

∑
w2`n =1

log |w − β|v =
log |βψ(n) − 1|

ψ(n)

≤ 1
ψ(n)

log(π (ψ(n)α− [ψ(n)α]))

≤ 1
ψ(n)

log

π ψ(n)
ψ(n+ 1)

∞∑
j=0

1
2jψ(n+1)


≤ log π + 1− n log 2 + log 2.

Thus, 1
2`n

∑
w2`n =1

log |β − w|v goes to −∞ as n→∞, so

lim
k→∞

1
2k

∑
w2k=1

log |w − β|v

does not exist.

6. Applications and further questions

6.1. Lyapunov exponents. The Lyapunov exponent L(ϕ) of a rational
map ϕ : P1

C −→ P1
C (see [Mañ88]) can be defined as follows. Choosing

coordinates [T0 : T1] for P1
C, letting t = T0/T , and writing ϕ(t) = P (t)/Q(t)

for polynomials P and Q, we define

L(ϕ) =
∫

P1(C)
log |ϕ′(t)|dµϕ,

where µϕ is the unique measure of maximal entropy measure for ϕ on P1;
this measure of maximal entropy is the same as the Brolin-Lyubich measure
discussed in Section 2 (see [Mañ83]).

The Lyapunov exponent can be computed via equidistribution on cer-
tain subsequences of inverse images of nonexceptional points in P1(C) (see
[DeM03], [Mañ88]). That is, given a nonexceptional point α in P1(C), there
is an infinite strictly increasing sequence of integers (mi)∞i=1 such that

L(ϕ) = lim
i→∞

1
(degϕ)mi

∑
ϕmi (β)=α
ϕ′(β) 6=0
β 6=∞

log |ϕ′(β)|.

It is not known, however, if L(ϕ) can be computed by taking the limit of
the average ϕ′ on the periodic points of ϕ.

When ϕ is defined over a number fieldK, however, we obtain the following
result as a corollary of Theorem 4.7.1.

Corollary 6.1. Let K be a number field and let ϕ : P1
C −→ P1

C be a
nonconstant rational map that is defined via base extension from a map
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ϕ : P1
K −→ P1

K . Let ϕ′ be defined as above. Then

L(ϕ) = lim
k→∞

1
(degϕ)k

∑
ϕk(ξ)=ξ
ϕ′(ξ) 6=0
ξ 6=∞

log |ϕ′(ξ)|.

Proof. We may write ϕ′ as a quotient of polynomials A(t)/B(t) with coef-
ficients in K. This yields log |ϕ′(t)| = log |A(t)| − log |B(t)|. The corollary
then follows immediately from Theorem 4.7. �

This corollary says that if ϕ is a rational function defined over a number
field, then the Lyapunov exponent of ϕ is completely determined by the
derivative of ϕ at the periodic points of ϕ. This means that the derivative
of ϕ at the periodic points of ϕ also determines the Hausdorff dimension of
the Julia set (see [FLM83]).

6.2. Symmetry of canonical heights. In [ST], we show that when ∞ is
not in the v-adic Julia set of ϕ for any archimedean v, we have

(6.1.1) lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

h(w) = lim
`→∞

1
2`
∑
ξ2`=ξ

hϕ(ξ).

This can be thought of as a symmetry relation, connecting h of the ϕ-
periodic points with hϕ of the roots of unity. The proof uses Theorem 4.10
along with Lyubich’s equidistribution theorem ([Lyu83]) and some adelic in-
tersection theory (see [Zha95] and [Zha92]). We are also able to use Theorem
4.10 to prove that

hϕ(β)− h(β) ≤ lim
k→∞

1
dk

∑
ϕk([w:1])=[w:1]

h(w) + hϕ(∞) + log 2.

Our proof of (6.1.1) does not work when ∞ is in the v-adic Julia set of ϕ,
for in that case the local height ĥv is not bounded on the v-adic Julia set.
Unfortunately, the v-adic Julia set is all of P1(Cv) when v is archimedean
for many rational maps ϕ. This is the case, for example, when ϕ is the map
obtained by taking the multiplication-by-2 map on an elliptic curve and
modding out by the hyperelliptic involution (such a map is called a Lattès
map).

On the other hand, the usual local height ĥv(t) of an element t ∈ Cv is
simply max(log |t|v, 0), which is only a little bit different from log |t|v, and
Theorem 4.7 proves a suitable equidistribution theorem for log |t|v. We hope
to extend the techniques of this paper so that we can prove an analog of
Theorem 4.7 for functions such as max(log |t|v, 0).

6.3. Computing with points of small height. The results in [Bil97],
[Aut01], [BR06], [FRL04], [FRL07], and [CL06] all apply not only to the
periodic points and backwards iterates of a point that we treat in this paper
but to all points of small height in the algebraic closure of a number field
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K. For example, one the main theorems in [BR06], [FRL04], [FRL07], and
[CL06] states that for any continuous function g on P1(Cv) and any infinite
nonrepeating sequence of points (αn) in P1(K) such that limn→∞ hϕ(αn) =
0, one has

(6.1.2) lim
n→∞

1
|Gal(αn)|

∑
σ∈Gal(αn)

g(ασn) =
∫

P1(Cv)
g dµv,ϕ,

where Gal(αn) is the Galois group of the Galois closure of K(αn) over K.
Baker, Ih, and Rumely ([BIR05]) and Autissier ([Aut07]) have produced

counterexamples that show that (6.1.2) does not always hold when the func-
tion g is replaced with log |F |v for F a polynomial. All of these exam-
ples involve infinite nonrepeating sequences of points (αn) ∈ Q̄ such that
limn→∞ h(αn) = 0 and

lim
n→∞

1
|Gal(αn)|

∑
σ∈Gal(αn)

log |ασn − 2| 6=
∫ 1

0
log |e2πiθ − 2|dθ.

The points (αn) are not preperiodic in any of these examples Thus, it
may be possible to prove that the main results of this paper continue to hold
when we work with any nonrepeating sequence of Galois orbits of preperiodic
points. This would imply the following conjectured generalization of Siegel’s
theorem for integral points.

Conjecture 6.2 (Ih). For any nonpreperiodic point β ∈ P1
oK

(K), there are
at most finitely many preperiodic points of ϕ in P1

oK
(K) that are integral

relative to β. (Here, oK is the ring of integers of K and α is said to be
integral relative to β if the Zariski closure of α does not meet the Zariski
closure of β in P1

oK
.)

Baker, Ih, and Rumely have proven that this is true when ϕ is a Lattès
map or the usual squaring map x 7→ x2 . Using Theorem 4.10 and arguing
as in [BIR05] (or as in [Sil93], which presents a related result), it is possible
to derive the following weak version of Ih’s conjecture in general.

Proposition 6.3. For any nonpreperiodic point β ∈ P1(K), there are at
most finitely many n such that all α ∈ P1(K) of period n are β-integral.
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[Mañ83] Ricardo Mañé, On the uniqueness of the maximizing measure for rational maps,
Bol. Soc. Brasil. Mat. 14 (1983), no. 1, 27–43.
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