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Let K be a number field or a function field of characteristic 0. 
If K is a number field, assume the abc-conjecture for K. We 
prove a variant of Zsigmondy’s theorem for ramified primes 
in preimage fields of rational functions in K(x) that are not 
postcritically finite. For example, suppose K is a number field 
and f ∈ K[x] is not postcritically finite, and let Kn be the field 
generated by the nth iterated preimages under f of β ∈ K. We 
show that for all large n, there is a prime of K that ramifies 
in Kn and does not ramify in Km for any m < n.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let K be either a number field or a function field of characteristic 0 of transcendence 
degree 1 over its field of constants. Let φ ∈ K(x) be a rational function. Recall that 
the morphism φ : P1(K) → P1(K) is postcritically finite if the forward orbit of the 
ramification locus of φ is a finite set. Let φ be a non-postcritically finite rational function 
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of degree d ≥ 2 and let β ∈ P1(K). As is usual in dynamics, we use φn to denote the 
map φ composed with itself n times. For each n ≥ 1, let

Kn = K(φ−n(β)) = K(γ ∈ K : φn(γ) = β).

It is a theorem of the first author and coauthors [BIJ+15] that for any β ∈ P1(K), there 
are infinitely many primes in K that ramify in 

⋃∞
n=1 Kn. The main idea of the theorem 

is to produce prime divisors of φn(α) − β for α a critical point of φ with canonical 
height hφ(α) > 0. The fact that there are infinitely many such primes follows from 
[Sil93]. Various authors (see [Zsi92,Elk91,Ric07,Kri13,IS09,FG11,GNT13] for example) 
have sought to show that not only are there infinitely many primes that divide φn(α) −β

for some n, but the stronger statement that there exists an N such that for all n > N , 
there is a prime that divides φn(α) − β that does not divide φm(α) − β for any m < n. 
If this is true, one might say that there are infinitely many primes dividing φn(α) − β

for some n because after a certain point each “new iterate” φn(α) − β gives a “new 
prime” dividing φn(α) − β. This is sometimes referred as the “Zsigmondy principle”, 
after Zsigmondy [Zsi92] who studied these questions in the context of primitive divisors 
of an − bn.

In this paper, we prove a Zsigmondy principle for ramification for certain types of 
rational functions, including polynomials. Our results are conditional on the abc conjec-
ture when K is a number field. For polynomials, our result is the following. Recall that 
if K is a function field with field of constants k, f is said to be isotrivial if there is an 
element σ ∈ K(x) of degree one such that σ ◦ φ ◦ σ−1 ∈ k̄(x).

Theorem 1.1. Let K be a number field or a function field of characteristic 0. Let f ∈ K[x]
be a polynomial with deg f ≥ 2 that is not postcritically finite, and let β ∈ K. If K is a 
number field, assume the abc conjecture for K. If K is a function field, assume that f is 
not isotrivial. Then, for all sufficiently large n, there exists a prime of K that ramifies 
in K(f−n(β)) and does not ramify in K(f−m(β)) for m < n.

Our most general theorem is most easily stated in terms of grand orbits. The orbit or 
forward orbit of β ∈ P1(K) is

Oφ(β) = {φn(β) : n ≥ 0} = {β, φ(β), φ2(β), . . . }.

The backward orbit of β is

O−
φ (β) = {α ∈ P1(K) : φn(α) = β for some n ≥ 0} =

∞⋃
n=0

φ−n(β).

The grand orbit of β is the backward orbit of the forward orbit, that is,

GOφ(β) = {α ∈ P1(K) : φm(α) = φn(β) for some m,n ∈ Z≥0}.
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Grand orbits under φ partition P1(K) into equivalence classes. A point β is said to be 
exceptional for φ if its grand orbit is a finite set. It is well known that if β is exceptional 
for φ, then (up to conjugacy by a fractional linear transformation) either φ is a polynomial 
and β = ∞, or φ(x) = xd for some d ∈ Z and β ∈ {0, ∞}.

A point β ∈ P1(K) is periodic if φn(β) = β for some n > 0 and preperiodic if 
φn(β) = φm(β) for some n > m ≥ 0. A point that is not preperiodic is wandering. We 
define a grand orbit to be preperiodic if one (equivalently any) of its points is preperiodic, 
and wandering otherwise.

We now state the main theorem. If K is a number field, we will assume that the abc
conjecture holds for K. If K is a function field of characteristic 0, the abc conjecture 
is a theorem of Mason–Stothers [Mas84,Sto81] (see also Silverman [Sil84]). As we now 
consider rational maps from P1(K) to itself, it is possible for ∞ to arise as a preimage 
of K, in which case we simply declare that K(∞) = K.

Theorem 1.2. Let φ ∈ K(x) with degφ ≥ 2. Suppose that φ is not postcritically finite 
and that β ∈ P1(K) is not exceptional for φ. If K is a number field, assume the abc
conjecture for K. If K is a function field, assume that φ is not isotrivial. Suppose that 
the ramification locus Rφ intersects at most d − 1 distinct wandering grand orbits. For 
all sufficiently large n, there exists a prime of K that ramifies in K(φ−n(β)) and does 
not ramify in K(φ−m(β)) for m < n.

Remark 1.3. Note that in Theorem 1.1, we do not need to assume that β is non-
exceptional. This is because if β ∈ K (i.e. β �= ∞) and f is a polynomial of degree 
at least 2, the only possible way for β to be exceptional is if f is a powering map and 
β = 0 (up to conjugation by a fractional linear transformation). But then f is postcriti-
cally finite, which is ruled out by assumption.

The restriction that φ be non-isotrivial is not a serious one. Indeed, we can treat the 
case of isotrivial rational functions by a fairly elementary argument, provided that β is 
not in the field of constants of K. See Theorem 5.1.

Theorem 1.2 immediately produces Theorem 1.1 as a special case, since a polynomial 
of degree d has at most d − 1 critical points other than the point at infinity (which is of 
course a fixed point). For rational functions in general we have the following theorem, 
which shows that a new prime ramifies at every two levels in the tower of fields Kn.

Theorem 1.4. Let φ ∈ K(x) with degφ ≥ 2. Suppose that φ is not postcritically finite and 
that β ∈ P1(K) is not exceptional for φ. If K is a number field, assume the abc conjecture 
for K. If K is a function field, assume that φ is not isotrivial. For all sufficiently large n, 
there exists a prime of K that ramifies in K(φ−n(β)) and does not ramify in K(φ−m(β))
for m ≤ n − 2.

One of our motivations for proving Theorem 1.2 was an application to the growth rate 
of Galois groups of iterates of polynomials. The group Gal(Kn/K) injects into Aut(Tn), 
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the automorphism group of the complete d-ary rooted tree of height n where d = degφ. 
The group Aut(Tn) is isomorphic to an iterated wreath product of the symmetric group 
Sd, so | Aut(Tn)| grows doubly exponentially in n. It is expected that in many cases the 
index | Aut(Tn) : Gal(Kn/K)| remains bounded as n → ∞, which implies that the degree 
of the splitting field of φn(x) − β over K grows doubly exponentially for large n. Odoni 
proved that generic polynomials have this property, as well as the particular polynomial 
x2 − x + 1 [Odo85,Odo88]; Juul [Juu15] proved that generic rational functions have this 
property. Stoll proved that an infinite family of quadratic polynomials [Sto92] have this 
property. Boston and Jones [BJ09] have proposed a dynamical analog of the Serre open 
image theorem (see [Ser72]), and we hope to use the techniques of this paper to treat 
some special cases of this problem, in particular the case of cubic polynomials.

It follows from our main theorem that the growth rate for many non-postcritically 
finite rational maps is at least simply exponential (conditional on the abc conjecture 
when K is a number field). For example, this includes all polynomial maps.

Corollary 1.5. Suppose that K, φ ∈ K(x), and β ∈ P1(K) satisfy the assumptions of 
Theorem 1.2. Then there exists C such that for all sufficiently large n, [K(φ−n(β)) :
K] ≥ C2n.

The strategy of our proof combines the approaches of both [GNT13] and [BIJ+15]. We 
begin with Lemma 3.1, which gives a necessary condition for Kn to ramify over p; this is 
adapted from [BGH+13]. We then prove Lemma 3.2, which gives a sufficient condition 
for a prime p to ramify in Kn. Note that the condition in both Lemmas has to do with 
whether or not a suitable iterate of a critical point of φ meets β at p. We then use a 
so-called “Roth-abc” result (see Proposition 2.2) to show that for each critical point α
of φ, the quantities φn(α) − βj have very few repeated factors for large n and suitable 
preimages βj of β. This is done in Lemma 4.2. We are also able to bound the contribution 
to the logarithmic height h(φn(α) − βj) coming from primes that divide φm(α′) − βj for 
some m < n and some critical point α′ of φ. This is done in Lemmas 4.1 and 4.3 (note 
that in the application of Lemma 4.3, it is crucial that the number of wandering grand 
orbits of φ containing a critical point is small). Putting these together along with some 
other simple estimates gives a prime p such that vp(φn(α) − βj) = 1 for some suitable 
preimage βj of β with the property that p does not ramify in Km for any m < n. 
Applying Lemma 3.2 then gives our main result, Theorem 1.2.

2. Preliminaries

Let K be either a number field or a function field of characteristic 0 with transcendence 
degree 1 over its field of constants k. Let φ ∈ K(x) be a rational function of degree d ≥ 2. 
If K is a number field, let oK be the ring of integers of K. If K is a function field, choose 
a prime q and let oK = {z ∈ K : vp(z) ≥ 0 for all primes p �= q of K}. For any prime p, 
let kp be the residue field oK/p.
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We use the notion of good reduction of rational functions as introduced by Morton 
and Silverman [MS94]. Let φ : P1(K) → P1(K) be a morphism, written in homo-
geneous coordinates as φ([X : Y ]) = [P (X, Y ) : Q(X, Y )], where P, Q ∈ oK [X, Y ]
are homogeneous polynomials of the same degree without any common factor in 
K[X, Y ]. Letting P0(X, Y ) = P (X, Y ) and Q0(X, Y ) = Q(X, Y ), we recursively de-
fine Pm+1 = P (Pm(X, Y ), Qm(X, Y )) and Qm+1 = Q(Pm(X, Y ), Qm(X, Y )). We let 
pm(X) = Pm(X, 1) and let qm(X) = Qm(X, 1).

Let φp = [Pp : Qp], where Pp, Qp ∈ kp[X, Y ] are the reductions of P and Q modulo p. 
We say that φ has good reduction at p if there is some way of writing φ in homogeneous 
coordinates as φ = [P, Q] such that max(degPp, degQp) equals max(degP, degQ) and 
Pp, Qp have no common factor in k̄p[X, Y ]. When φ has good reduction at p, φp induces 
a nonconstant morphism from P1

kp
to itself. When this morphism is separable, we say 

that φ has good separable reduction at p.

2.1. Heights

For a rational prime p of K, define

Np = 1
[K : Q] log #kp

if K is a number field and

Np = [kp : k]

if K is a function field. As in [GNT13], normalizing by the degree of the number field 
will make it easier to state proofs in the same way for both number fields and function 
fields.

If K is a number field, the height of z ∈ K is defined as

h(z) = −
∑

primes p of oK

min(vp(z), 0)Np + 1
[K : Q]

∑
σ:K↪→C

max(log |σ(z)|, 0)

where the second sum is taken over all maps σ : K → C (in particular, complex conjugate 
embeddings are not identified). We extend h to P1(K) by setting h(∞) = 0. If K is a 
function field, instead the height of z ∈ K is

h(z) = −
∑

primes p of oK

min(vp(z), 0)Np.

In either case, for z �= 0 the product formula gives the inequality
∑

vp(z)Np ≤ h(z).

vp(z)>0
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We will use the Call–Silverman canonical height hφ, which is defined by

hφ(x) = lim
n→∞

h(φn(x))
dn

.

This limit exists by the same telescoping series argument that shows the existence of 
the Nerón–Tate height on an elliptic curve. See [CS93] for details. The canonical height 
satisfies the following important properties for some absolute constant Cφ and for every 
x ∈ K:

hφ(φ(x)) = dhφ(x), and

|h(x) − hφ(x)| ≤ Cφ.

It follows immediately from these properties that hφ(x) �= 0 if and only if h(φn(x)) → ∞
as n → ∞.

If K is a number field, then for n ≥ 2 we define the height of the nonzero n-tuple 
(z1, z2, . . . , zn) ∈ Kn by

h(z) = −
∑

primes p of oK

min(vp(z1), . . . , vp(zn))Np

+ 1
[K : Q]

∑
σ:K↪→C

max(log |σ(z1)|, . . . , log |σ(zn)|)

2.2. The abc-conjecture

For z1, . . . , zn ∈ K×, we define

I(z1, . . . , zn) = {primes p of oK | vp(zi) �= vp(zj) for some i, j}

and

rad(z1, . . . , zn) =
∑

p∈I(z1,...,zn)

Np.

With this notation, we assume the abc-conjecture as follows.

Conjecture 2.1. Let K be a number field. For any ε > 0, there exists a constant CK,ε

such that for all a, b, c ∈ K× with a + b = c, we have

h(a, b, c) < (1 + ε) rad(a, b, c) + CK,ε.

We will make use of the following estimate, sometimes called “Roth-abc” as in 
[GNT13], which holds for number fields conditionally on the abc-conjecture and is true 
unconditionally for function fields of characteristic 0. The following combines Proposi-
tions 3.4 and 4.2 from [GNT13].
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Proposition 2.2. Let K be a number field or function field of characteristic 0. If K is a 
number field, suppose that the abc-conjecture holds for K. Let F ∈ K[x] be a polynomial 
of degree at least 3 with no repeated factors and let ε > 0. Then there exists CF,ε such 
that for all x ∈ K,

∑
vp(F (x))>0

Np ≥ (degF − 2 − ε)h(x) + CF,ε.

Note that in the case where K is a function field, the Roth-abc estimate does not 
follow from the abc conjecture but instead requires Yamanoi’s proof [Yam04] of the 
Vojta conjecture for algebraic points on curves over function fields of characteristic 0.

2.3. Base extension

Certain arguments are made more easily after passing from our number field or func-
tion field K to a finite extension L of K. We will quickly show that our results are true 
over K exactly when they are true over a finite extension.

Lemma 2.3. Let K be a number field or function field of characteristic 0, let L be a finite 
extension of K, let p be a finite prime of K that does not ramify in L, and let q be a 
finite prime of L such that q|p. Then, for any finite Galois extension M of K, the prime 
p ramifies in M if and only if q ramifies in the compositum M · L.

Proof. Suppose that p does not ramify in M . Then p does not ramify in M · L since p
does not ramify in L. Thus, any prime q of L such that q|p cannot ramify in M · L.

Suppose that p ramifies in M . Since M is Galois over K, this means that e(m/p) > 1
for any m|p in M . Thus, for any r|p in L ·M , we have e(r/p) > 1. Since e(q/p) = 1, we 
must have e(r/p) = e(r/q); hence, e(r/q) > 1 so q ramifies in M · L. �
Lemma 2.4. Let K be a number field or function field of characteristic 0, let β ∈ K, and 
let φ be a rational function with coefficients in K. Let L be a finite extension of K. Then 
the following statements are equivalent:

(a) For all sufficiently large n, there is a finite prime p of K such that p ramifies in 
K(φ−n(β)) and p does not ramify in K(φ−m(β)) for m < n.

(b) For all sufficiently large n, there is a finite prime q of L such that q ramifies in 
L(φ−n(β)) and q does not ramify in L(φ−m(β)) for m < n.

Proof. Let S be the set of finite primes of K that ramify in L and let T be the set of 
primes of L that lie over primes in S.

Suppose that (a) holds. Then, since S is finite, for all sufficiently large n, there is a 
finite prime p /∈ S of K such that p ramifies in K(φ−n(β)) and p does not ramify in 
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K(φ−m(β)) for m < n. If q is a prime of L such that q|p, then q ramifies in L(φ−n(β))
and q does not ramify in L(φ−m(β)) for m < n, by Lemma 2.3.

Likewise, if (b) holds, then, since T is finite, for all sufficiently large n, there is a finite 
prime q /∈ T of L such that q ramifies in L(φ−n(β)) and q does not ramify in L(φ−m(β))
for m < n. If p is a prime of K such that q|p, then p ramifies in K(φ−n(β)) and p does 
not ramify in K(φ−m(β)) for m < n, again by Lemma 2.3. �

By Lemma 2.4, it suffices to prove Theorem 1.2 over a finite extension L of K. We 
argue here that it also suffices to prove the Theorem after replacing φ with φσ = σ◦φ ◦σ−1

for any Möbius transformation σ ∈ L(x), and replacing β with σ(β). Note that for any 
φ ∈ K(x) and β ∈ P1(K), the hypotheses of Theorem 1.2 (φ is postcritically finite, β
is non-exceptional, and the condition on wandering grand orbits intersecting Rφ) are 
invariant under this change of variables. This is because α is a critical point of φ if 
and only if σ(α) is a critical point of φσ, and because the map σ induces a bijection 
from the grand orbits of φ to the grand orbits of φσ that preserves their structure as 
grand orbits. Thus, we may assume that φ has a fixed point defined over K, and, after 
changing variables, we may assume that β = 0 and φ(∞) = ∞. Note that this means 
that degPm > degQm for all m and that when φ has good reduction at p, the leading 
coefficient of Pm is not divisible by p for all m.

3. Criteria for ramification

To prove Theorem 1.1, we will need some conditions for ramification in preimage 
fields. The necessary condition is an adaptation of a standard result about ramification 
in p-adic fields, for example [BGH+13, Lemma 1]. Recall that K is either a number 
field or a function field of characteristic 0. From this point forward, for φ ∈ K(x) and 
β ∈ P1(K), we use the notation Kn = K(φ−n(β)) as defined in the introduction.

Proposition 3.1. Let φ ∈ K(x) and β ∈ K. Let p be a prime of K such that φ has good 
separable reduction and vp(β) ≥ 0. If p ramifies in Kn, there exists α ∈ Rφ such that 
vp(φm(α) − β) > 0 for some m with 1 ≤ m ≤ n.

Proof. Let (pn)p and (qn)p denote the reductions of pn and qn at p, and let βp denote 
the reduction of β at p. Since Kn is the splitting field of pn(X) −βqn(X), it follows that 
if Kn ramifies at p then F (X) = (pn)p(X) −βp(qn)p(X) has a multiple root. Thus, there 
is a root of F (X) that is also a root of the derivative of F (X).

Note that if γ is a root of both F (X) and F ′(X), then γ is also a root of 
(pn)′p(X)(qn)p(X) − (pn)p(X)(qn)′p(X). Since (φp)n is separable at p, we see that 
(pn)′p(X)(qn)p(X) − (pn)p(X)(qn)′p(X) is not identically zero. Hence, all of its roots 
are the reduction modulo p of a root of p′n(X)qn(X) − pn(X)q′n(X). Therefore, there is 
a critical point α of φn that reduces to a root of (pn)p(X) −β(qn)p(X) at p. This means 
that vp(φm(α) − β) > 0. �
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Proposition 3.2. Let φ ∈ K(x) and β ∈ K. For all primes p of K such that φ has good 
separable reduction at p and vp(β) ≥ 0, if there exists a critical point α of φ such that 
φn(α) �= ∞ and vp(φn(α) − β) = 1, then p ramifies in Kn.

Proof. This is the criterion that forms the main argument of [BIJ+15, Theorem 5]. We 
provide a brief proof here. First note that by Lemma 2.3, we may assume without loss 
of generality that α ∈ K, as otherwise we can replace K by K(α).

Since Kn is the splitting field of pn(X) − qn(X)β and α ∈ K, it follows that Kn is 
also the splitting field of the polynomial pn(X + α) − qn(X + α)β. We write

pn(X + α) − qn(X + α)β = akX
k + · · · + a0.

Note that vp(a0) = vp((φn(α) − β)qn(α)) = 1, because vp(qn(α)) = 0 since vp(β) ≥ 0
and φn has good reduction at p. Also note that vp(ak) = 0, again using the fact that φn

has good reduction at p.
Now, pn(X + α) − qn(X + α)β is congruent to pn(X + α) − qn(X + α)φn(α) mod p, 

because vp(φn(α) − β) > 0. We have that Xe divides pn(X + α) − qn(X + α)φn(α), 
where e > 1 is the ramification index of α, so there is an � > 1 such that vp(aj) > 0 for 
k = 0, . . . , � − 1 and vp(a�) = 0. Thus, the first segment of the p-adic Newton polygon of 
pn(X+α) −qn(X+α)β is the line from (0, 1) to (�, 0). Therefore, pn(X+α) −qn(X+α)
has a root γ such that vp(γ) = 1/�, which means that Kn ramifies over K at p. (See 
[Kob77, IV.3] for summary of the theory of Newton polygons.) �

In the next section, we will use Propositions 3.1 and 3.2 in tandem to show the 
existence of primes that ramify in the nth preimage field but do not ramify earlier.

4. Proofs of main theorems

To prove Theorem 1.2, we want to reduce to the case where the base point β is 
non-periodic and non-postcritical. This ensures that the preimage sets φ−n(β) are of 
size dn, and in particular, that the numerator of φn(x) − β is a squarefree polynomial. 
This will allow us to easily use the Roth-abc estimate of Proposition 2.2. Of course, in 
general β may be periodic or postcritical. Let t be the smallest positive integer such that 
no element of φ−t(β) \ φ−(t−1)(β) is periodic or postcritical. Let {β1, . . . , βN} denote 
φ−t(β) \ φ−(t−1)(β). Note that if x ∈ φ−n(β) for some n > t, and x is not periodic, not 
critical, and not postcritical, then x ∈

⋃N
j=1 O−

φ (βj). By the discussion at the end of 
Section 2, we may adjoin the critical points of φ and the points β1, . . . , βN to K, and 
also make a change of variables such that β = 0 and φ(∞) = ∞.

Lemma 4.1. Let α ∈ P1(K) with hφ(α) > 0 and let β1, . . . , βN be as above. If K is a 
number field, assume the abc conjecture for K. Let δ > 0. For n > 0, let Z(n) denote 
the set of primes p of K such that
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min(vp(φn(α) − βi), vp(φm(α) − βj)) > 0

for some 0 < m < n and some i, j between 1 and N . Then there exists a constant Cδ

such that
∑

p∈Z(n)

Np ≤ δdnhφ(α) + Cδ

for all sufficiently large n.

Proof. Let F (X) =
∏N

i=1(X − βi). Then F divides the numerator of φt (because 
φt(βi) = 0 for all i), none of the βi are periodic, and φ�(βi) �= 0 for all i and any 
� = 0, . . . t −1. Then Proposition 5.1 of [GNT13] asserts that if Z ′(n) is the set of primes 
p such that min(vp(φm+t(α)), vp(F (φn(α)))) > 0, then for any δ > 0, there is a constant 
Cδ such that

∑
p∈Z′(n)

Np ≤ δh(φn(α)) + Cδ

for all n. If φ has good reduction at p and

min(vp(φn(α) − βi), vp(φm(α) − βj)) > 0,

then φm(α) ≡ βj (mod p), so φm+t(α) ≡ φt(βj) ≡ 0 (mod p), and so we have 
vp(φm+t(α)) > 0. Likewise, vp(F (φn(α))) > 0 since βi is a root of F which is con-
gruent to φn(α) mod p. Thus, we see that if p ∈ Z(n) and φ has good reduction at p, 
then p is in Z ′(n). The contribution to the sum of Np for the finitely many primes p
where φ has bad reduction can be absorbed into the constant Cδ. Using the properties 
of hφ established in Section 2, namely that hφ(φ(x)) = dhφ(x) and that |h(x) − hφ(x)|
is bounded independently of x, our proof is complete. �
Lemma 4.2. Let βj be as above. If K is a number field, suppose that the abc-conjecture 
holds for K. For every ε > 0, there is a constant Cε such that

∑
vp(φn(α)−βj)=1

Np ≥ (d− ε)dn−1hφ(α) + Cε.

Proof. Choose m > 0 such that 3/dm < ε/d. Since βj is not in the post-critical set, for 
any m, the set of solutions to φm(x) = βj consists of exactly dm distinct points. Thus, 
pm(X) − βjqm(X) has no repeated roots. Thus, using Proposition 2.2, and the fact that 
|h − hφ| is bounded, there is a constant C1 such that

∑
Np ≥ (dm − 3)hφ(x) + C1
vp(pm(x)−βjqm(x))=1
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for all x ∈ K. Letting x = φn−m(α), we see there is a constant C2 such that
∑

vp(φm(φn−m(α)))=1

Np ≥ (1 − ε/d)dmdn−mhφ(α) + C1 ≥ (d− ε)dn−1hφ(α) + C2.

For all but at most finitely many p we have vp(φn(α)) = vp(F (φn(α))), so the Lemma 
follows immediately. �
Lemma 4.3. Let G be a set of critical points of φ that all have the same grand orbit. Let 
Y(i, j) be the set of primes p such that

vp(φi(γ) − βj) > 0

for some γ ∈ G. Let MG = maxγ∈G hφ(γ). Then, for all n, we have

n−1∑
i=1

N∑
j=1

∑
p∈Y(i,j)

Np ≤ N

(
1

d− 1

)
dnMG + O(n).

Proof. Let α ∈ G be the critical point of largest canonical height hφ(α). For every 
γ ∈ G, we have φn(α) = φm(γ) for some n, m ≥ 0, so dnhφ(α) = dmhφ(γ) and m ≥ n. In 
other words, α is the “farthest forward” critical point in the grand orbit. So except for 
1 ≤ i ≤ m − n, the primes that divide φi(γ) − βj also divide φk(α) − βj for some k. The 
indicated initial values of i have a finite contribution to the sum that can be absorbed 
into the O(n) term.

By the product formula and properties of heights we have
∑

vp(φi(α)−βj)>0

Np ≤ h(φi(α) − βj) ≤ dih(α) + h(βj) + Cφ.

So we can use the estimation
n−1∑
i=1

N∑
j=1

∑
p∈Y(i,j)

Np ≤ NMG
dn − 1
d− 1 + nCφ,β1,...,βN

+ O(n)

and the lemma follows. �
Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Assume that φ ∈ K(x) is not postcritically finite and that β ∈
P1(K) is not exceptional for φ. Let β1, . . . , βN be as above. If necessary, replace K
with K(α, β1, . . . , βN ) (by Lemma 2.4 this loses no generality). Let g be the number of 
wandering grand orbits that Rφ intersects (we have g ≤ d − 1) and let α ∈ Rφ be a 
critical point of maximum canonical height hφ(α). Observe that hφ(α) > 0, because if 
every critical point has canonical height 0, then φ is postcritically finite. This follows 
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from the fact that if K is a number field, then any nonpreperiodic point must have 
positive canonical height by Northcott’s theorem, while if K is a function field, Baker 
[Bak09] and Benedetto [Ben05] have proved that any nonpreperiodic point has positive 
canonical height whenever φ is not isotrivial. Hence, we may apply Lemma 4.1 to the 
orbit of α.

As in the proof of Lemma 4.3, α is the farthest forward critical point in its grand orbit. 
So for each other critical point γ in the same grand orbit as α, we have φu(γ) = φs(α)
for some positive integers s, u with s ≤ u. Choose u to be maximal such that there is a 
critical point γ in the same grand orbit as α such that φu(γ) = φs(α) for some s (this 
occurs when γ is of minimal canonical height among all critical points in the same grand 
orbit).

Now, let X (n) be the set of primes p of K such that

• φ has good separable reduction at p,
• vp(φm(γ) −βj) ≤ 0 for all critical points γ in the same grand orbit as α, all 1 ≤ m ≤

u − 1, and all 1 ≤ j ≤ N .
• vp(φn(α) − βj) = 1 for some 1 ≤ j ≤ N ,
• vp(φm(α) − βj) ≤ 0 for all 1 ≤ m ≤ n − 1 and 1 ≤ j ≤ N , and
• vp(φm(γ) − βj) ≤ 0 for every critical point γ not in the same grand orbit as α, and 

all 1 ≤ m ≤ n − 1 and 1 ≤ j ≤ N .

Suppose that p ∈ X (n). We claim that p ramifies in Kn and does not ramify in Km for 
m < n. By Propositions 3.1 and 3.2, we need only show that there is no critical point γ
in the same grand orbit as α so that vp(φm(γ) − βj) > 0 for some j and some m < n. 
Aiming for a contradiction, suppose there is some such γ. We have φu(γ) = φs(α) for u as 
above and some positive s. Since vp(φm(γ) −βj) > 0, we must have m ≥ u by the second 
bullet point defining X (n). So φm(γ) = φm−u+s(α) ≡ βj (mod p). But m −u +s ≤ n −1, 
which is a contradiction by the fourth bullet point.

It remains to show that X (n) is nonempty for all large n. There are only finitely many 
primes p for which φ fails to have good separable reduction at p or vp(φm(γ) − βj) > 0
for a critical point γ in the same grand orbit as α, some βj, and some 1 ≤ m ≤ u − 1. 
Therefore we focus on the other conditions that define X (n), as this finite set of primes 
will only contribute a constant to our height estimates.

By Lemma 4.2, for a given j and any ε > 0 we have

∑
vp(φn(α)−βj)=1

Np ≥ (d− ε)dn−1hφ(α) + Cε.

It follows that

∑
n

Np ≥ N(d− ε)dn−1hφ(α) + Cε
vp(φ (α)−βj)=1 for some j
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because the primes p such that vp(φn(α) − βj) > 0 for j = j1 and j = j2 are divisors of 
βj1 − βj2 . The set of primes dividing βj1 − βj2 for j1 �= j2 is finite, so the contribution 
to the sum from these primes can be absorbed into the constant Cε. At this point, we 
can also absorb into Cε any contribution to the sum of Np from the finite set of primes 
mentioned in the previous paragraph.

Now we apply Lemma 4.1 to α and each βj , and we apply Lemma 4.3 to the grand 
orbits not containing α that intersect Rφ. There are at most d − 2 such wandering 
grand orbits; any preperiodic grand orbits contribute at most an O(n) term to the sum 
because the term MG coming from Lemma 4.3 is zero. Now we subtract the conclusion 
of Lemma 4.1 (N times) and Lemma 4.3 (g−1 times) from the conclusion of Lemma 4.2. 
This gives the following: for every ε > 0 and δ > 0, there are constants Cε, Cδ, and C
such that, for all sufficiently large n, we have

∑
p∈X (n)

Np ≥N(d− ε)dn−1hφ(α) + Cε −Nδdnhφ(α) − Cδ

− (g − 1)N 1
d− 1d

nhφ(α) + Cn

≥dnhφ(α)N
(

1 − εd−1 − δ − d− 2
d− 1

)
+ Cn.

Choosing ε and δ small enough, this quantity is positive for all large n, and we are 
done. �
Proof of Theorem 1.4. By the chain rule, the critical points of φ2 are either critical 
points of φ or preimages of these points under φ, so the critical points of φ2 lie in at 
most #Rφ ≤ 2d − 2 distinct grand orbits. We have 2d − 2 < d2 − 1 because d > 1. 
Applying Theorem 1.2 to the map φ2 and the point β, and also to a distinct point in 
φ−1(β) (which exists because β is not exceptional) yields the result. �
Proof of Corollary 1.5. By Theorem 1.1, for all sufficiently large n there is a prime of 
K that ramifies in Kn+1 but not in Kn. Therefore the kernel of the natural surjection 
Gal(Kn+1/K) → Gal(Kn/K) is nontrivial, so it must be at least order 2. The result 
follows. �
5. The isotrivial case

In this section we treat the case of isotrivial rational functions. The techniques here 
are much more elementary than in the rest of the paper.

Theorem 5.1. Let K be a function field of characteristic 0 with field of constants k, and 
let φ ∈ K(x) be a rational function of degree greater than one. Suppose that there is 
a finite extension K ′ of K and σ ∈ K ′(x) such that σφσ−1 ∈ k′(x), where k′ is the 
algebraic closure of k in K ′. Then we have the following:
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(a) If σ(β) ∈ k′, then there are at most finitely many primes of K that ramify in ⋃∞
n=1 Kn.

(b) If σ(β) /∈ k′ and φ is not postcritically finite, then for all sufficiently large n, there 
exists a prime of K that ramifies in Kn and does not ramify in Km for m < n.

Proof. Suppose that σ(β) ∈ k′. Then, if φn(α) = β, we have

σφσ−1(σ(α)) = σ(β) ∈ k′.

Since σφσ−1 ∈ k′(x), where k′ is algebraic over k, it follows that σ(α) ∈ k̄. Thus, α
is in the compositum k̄ ·K ′. Since K ′ ramifies over at most finitely many primes of K
and k̄ · K ′ is unramified everywhere over K ′, we see that k̄ · K ′ ramifies over at most 
finitely many primes of K. Thus, there are only finitely many primes of K that ramify 
in 

⋃∞
n=1 Kn.

Now suppose that σ(β) /∈ k′. After passing to a finite extension, we may assume that 
all the critical points of φ are defined over K ′. Let φσ denote σφσ−1. Since every critical 
point of φσ is simply σ(z) for a critical point z of σ and every critical point of φσ is 
algebraic over k, we see then that every critical point of φσ is in k′.

Now, note that σ(β) is not algebraic over k′, and that K ′ is therefore a finite extension 
of k′(σ(β)). For any critical point α′ of φσ and any m, we see that (φσ)m(α′) − σ(β)
generates a prime in k′(σ(β)). Since φσ is not postcritically finite, there is a critical point 
α of φσ such that (φσ)m(α) �= (φσ)n(α′) for any n < m and any critical point α �= α′. 
Thus, for every n > 0, there is a prime m of k′(σ(β)) such that vm((φσ)n(α) −σ(β)) = 1
and vm((φσ)m(α)′−σ(β)) = 0 for all m < n. Then, by Proposition 3.2 and 3.1, this prime 
m ramifies in k′(σ(β))((φσ)−n(σ(β))) and does not ramify in k′(σ(β))((φσ)−m(σ(β))) for 
any m < n. Note that since σ is defined over K ′ and (φσ)n = σφnσ−1, we see that for 
any z we have (φσ)n(z) = σ(β) if and only if φn(σ(z)) = β. Thus, by Lemma 2.4 it 
follows that for all but finitely many n, there is a prime q of K ′ such that q ramifies in 
K(φ−n(β)) but q does not ramify in K(φ−m(β)) for any m < n. Applying Lemma 2.4
again, we see that for all but finitely many n, there is a prime p of K such that p ramifies 
in K(φ−n(β)) but p does not ramify in K(φ−m(β)) for any m < n, as desired. �
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