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Using methods of p-adic analysis, we obtain effective bounds for the length of the orbit

of a preperiodic subvariety Y ⊂ X under the action of an étale endomorphism of X. As

a corollary of our result, we obtain effective bounds for the size of torsion of any semi-

abelian variety over a finitely generated field of characteristic 0. Our method allows us

to show that any finitely generated torsion subgroup of Aut(X) is finite. This yields a

different proof of Burnside’s problem for automorphisms of quasiprojective varieties X

defined over a field of characteristic 0.

1 Introduction

In [27], Morton and Silverman conjecture that there is a constant C (N, d, D) such that for

any morphism f : PN −→ PN of degree d defined over a number field K with [K : Q] ≤ D,

the number of preperiodic points of f in PN(K) is ≤ C (N, d, D). This conjecture remains

very much open, but in the case where f has good reduction at a prime p, a great deal

has been proved about bounds depending on p, N, d, D (see [18, 28, 36]).
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2 J. P. Bell et al.

In this paper, we study the more general problem of bounding periods of

subvarieties of any dimension. We prove the following theorem.

Theorem 1.1. Let K be a finite extension of Qp, let ov be the ring of integers of K, let

kv be its residue field and let e be the ramification index of K/Qp. Let X be a smooth

ov-scheme whose generic fiber X has dimension g, let Φ : X −→X be étale, let Y be a

subvariety of X , and assume there is a point on Y(ov) which is smooth on the generic

fiber of Y. We let X̄ be the special fiber of X , and let r be the smallest non-negative

integer larger than (log(e) − log(p− 1))/ log(2). If Y is preperiodic under the action of Φ,

then the length of its orbit is bounded above by p1+r · #GLg(kv) · #X̄ (kv). �

Theorem 1.1 is proved using p-adic analytic parameterization of forward orbits

under the action of an étale endomorphism of a quasiprojective variety. The same

method can be used to study finitely generated torsion subgroups of Aut(X), when X

is a quasi-projective variety defined over a field K of characteristic zero. Theorem 3.1

gives an upper bound on the size of the largest finitely generated torsion subgroup in

AutX when X has a smooth model over a finite extension of the p-adic integers; the

bound depends only on the dimension of X and on the number of points in the special

fiber of this model. This gives rise to a new proof of the following theorem of Bass and

Lubotzky [4].

Theorem 1.2. Let X be a geometrically irreducible quasiprojective variety defined over

a field of characteristic 0. Then each finitely generated torsion subgroup H of Aut(X) is

finite. �

Theorem 1.2 shows, in particular, that the Burnside problem has an affirmative

solution for automorphism groups of quasiprojective varieties. We recall that the Burn-

side problem is said to have a positive answer for a group G if every finitely generated

torsion subgroup of G is finite. The first substantial result in this area was due to Burn-

side (cf. [21, Section 9]), who showed that if H is a (not necessarily finitely generated)

torsion subgroup of GLn(C) of exponent d, then the order of H could be bounded in terms

of d and n. Using a specialization argument and applying Burnside’s result, Schur [31]

later showed that every finitely generated torsion subgroup of GLn(C) is finite. Proofs

of geometric Burnside-type results generally proceed along similar lines as that of the

Burnside–Schur theorem: one first uses specialization to reduce to the case that the

base field is a finitely generated extension of the prime field; one then shows that in this

case a torsion subgroup necessarily has bounded exponent and is finite. An interesting
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Bounding Periods of Subvarieties 3

problem that arises naturally is to then bound the exponent and the order of a torsion

subgroup of Aut(X) in terms of geometric data and the field k of definition for X when

k is a finitely generated extension of Q. Some work in this direction has been done by

Serre [32], who gave sharp upper-bounds on the sizes of torsion subgroups of the group

of birational transformations of P2(k) when k is a finitely generated extension of Q.

The p-adic analytic parameterization of forward orbits under the action of an

automorphism of a quasiprojective variety can be used in different directions as well.

We prove the following result.

Theorem 1.3. Let X be an irreducible quasiprojective variety defined over Q̄ of dimen-

sion larger than 1, and let Φ be an automorphism of X for which there exists no non-

constant f ∈ Q̄(X) such that f ◦ Φ = f . Then, there exists a codimension-2 subvariety Y

whose orbit under Φ is Zariski dense in X. �

For any subvariety Y, its orbit under Φ is the union (denoted OΦ(Y)) of all Φn(Y)

for n∈ N.

We note that if there exists a nonconstant f ∈ Q̄(X) such that f ◦ Φ = f , then

for any subvariety Y ⊆ X, we have that f(OΦ(Y)) = f(Y); so, the orbit of Y would not be

Zariski dense in X since it would be contained in a smaller dimension subvariety (note

that Zariski closure of f(Y) has dimension bounded above by dim(Y) < dim(X)).

Theorem 1.3 yields positive evidence to two conjectures in arithmetic geome-

try. On one hand, we have the potential density question, that is, describe the class of

varieties X defined over Q̄ for which there exists a number field K such that X(K) is

Zariski dense in X (see [2, 9, 17] for various results regarding potentially dense vari-

eties). Our Theorem 1.3 yields that if Y is potentially dense, then X is potentially dense.

In particular, if X is a surface, then Theorem 1.3 yields the existence of a point x ∈ X(Q̄)

whose orbit is Zariski dense in X (note that in this case, Y is a finite collection of points

and since X is irreducible, we obtain that a single orbit under Φ must be Zariski dense

in X). Hence, Theorem 1.3 yields a positive answer for automorphisms of surfaces for

the following conjecture (proposed independently by Amerik et al. [2], and Medvedev

and Scanlon [25]).

Conjecture 1.4. Let X be a quasiprojective variety defined over an algebraically closed

field K of characteristic 0. Let Φ : X −→ X be an endomorphism defined over K such that

there exists no positive-dimensional variety Y and no dominant rational map Ψ : X −→ Y

such that Ψ ◦ Φ = Ψ generically. Then, there exists x ∈ X(K) such that OΦ(x) is Zariski

dense in X. �
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4 J. P. Bell et al.

Alternatively, one can formulate the hypothesis in Conjecture 1.4 by asking that

Φ does not preserve a rational fibration, that is, there exists no nonconstant f ∈ K(X)

such that f ◦ Φ = f . Arguing as above, if Φ preserves a nonconstant rational fibration f ,

then there is no point x with Zariski dense orbit under Φ. Indeed, otherwise the entire

orbit of x would be mapped by f into f(x); hence, OΦ(x) cannot be Zariski dense in X

because this would imply that f is constant. Conjecture 1.4 strengthens a conjecture

of Zhang, which was also the motivation for both Amerik, Bogomolov, and Rovinsky,

respectively for Medvedev and Scanlon for formulating the above Conjecture 1.4. Moti-

vated by the dynamics of endomorphisms on abelian varieties, Zhang [35] proposed the

following question for polarizable endomorphisms. We say that Φ is polarizable if there

exists an ample line bundle L on X such that Φ∗(L) =L⊗d (in Pic(X)) for some integer

d> 1. Zhang [35] conjectured that given a projective variety X defined over a number

field K endowed with a polarizable endomorphism Φ, then there exists a point x ∈ X(K̄)

whose orbit under Φ is Zariski dense in X.

In [3], Amerik and Campana prove Conjecture 1.4 for projective varieties of triv-

ial canonical bundle defined over an uncountable field K. However, if K = Q̄, then the

problem seems much more difficult. Only recently, Medvedev and Scanlon [25] proved

Conjecture 1.4 when Φ = ( f1, . . . , fN) is an endomorphism of AN given by N one-variable

polynomials fi defined over Q̄. Also, Junyi [19, Theorem 1.4] proved Conjecture 1.4 for

birational maps on projective surfaces. Finally, connected to Conjecture 1.4, we mention

Amerik’s result [1] who proved (using the p-adic approach introduced in [7]) that most

orbits of algebraic points are infinite under the action of an arbitrary rational self-map

(of infinite order).

Our proof of Theorem 1.3 uses a result (see Theorem 4.2) that gives an upper

bound for the period of codimension-1 subvarieties of X which are periodic under Φ;

in particular, this yields that the union of all periodic hypersurfaces is Zariski closed.

We note that Cantat [10, Theorem A] proved a similar bound for the number of periodic

hypersurfaces under the stronger hypothesis that there exist no nonconstant rational

function f and no constant α such that f ◦ Φ = α · f . Our Theorem 1.1 yields that each

periodic subvariety with a point over some complete v-adic field has bounded period. So,

if Y is a codimension-2 subvariety of X which is neither periodic, nor contained in one of

the finitely many codimension-1 periodic subvarieties, then its orbit under Φ is Zariski

dense. Using the same approach, it is immediate to get the existence of codimension-1

subvarieties with a Zariski dense orbit in X.

Using the hypothesis that X contains a Zariski dense orbit, and also using

Vojta’s proof of the Mordell–Lang Theorem for semiabelian varieties (see [34]) we obtain
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Bounding Periods of Subvarieties 5

the following stronger bound for the number and period of codimension-1 periodic

subvarieties.

Theorem 1.5. Let X be a quasi-projective variety and let σ : X −→ X be an automor-

phism defined over a number field K and suppose that there is a point x ∈ X(K) such

that the orbit of x under σ is Zariski dense in X. Let Y be a projective closure of X, and

let ρ(Y) be the Picard number of Y. Then, any σ -invariant closed subset W of X has at

most dim X − h1(Y,OY) + ρ(Y) geometric components of codimension 1. �

Of course, Conjecture 1.4 for an automorphism σ : X −→ X follows immediately

whenever one knows that the union of all σ -invariant subvarieties is Zariski closed.

Hence, the following equivalence is of interest here.

Definition 1.6. Let X be a quasi-projective variety over a field K and let σ : X → X be an

automorphism of X. We say that (X, σ ) satisfies the geometric Dixmier–Moeglin equiva-

lence if the following are equivalent for each σ -stable subvariety Y of X:

(1) there exists a point y∈ Y such that {σn(y) : n∈ Z} is Zariski dense in Y;

(2) the union of all proper σ -invariant subvarieties of Y is Zariski closed;

(3) there does not exist a nonconstant f ∈ k(Y) such that f ◦ σ = f . �

We note that the geometric Dixmier–Moeglin equivalence does not hold in

general—for example, there are Hénon maps of A2 with the property that (3) holds but

(2) does not (cf. Devaney and Nitecki [14] and Bedford and Smillie [5, Theorem 1])—but it

is conjectured to hold when X is smooth and projective and σ has zero entropy. As before,

for X a complex variety, we have the implications (2) �⇒ (1) �⇒ (3) [8]. Theorem 1.3

proves that the equivalences from Definition 1.6 hold for any surface.

Here is the plan of our paper: in Section 2, we prove some preliminary results (see

Proposition 2.1) for rigid analytic functions, which we use then in Section 3 for proving

Theorems 1.1 and 1.2 and their corollaries. In Section 4, we find an upper bound for the

period of codimension-1 periodic subvarieties under the action of an automorphism Φ of

a quasiprojective variety which does not preserve a rational fibration (see Theorem 4.2).

In Section 5, using Theorem 4.2, we prove Theorem 1.3 and Theorem 1.5. Finally, we

conclude with Section 6 in which we discuss related questions (in the spirit of Poonen’s

conjectures [29]) about uniform boundedness for periods of points in algebraic families

of endomorphisms.

 at U
niversity of R

ochester on M
ay 1, 2014

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


6 J. P. Bell et al.

2 Nonarchimedean Analysis

2.1 Power series

The setup for this section is as follows: p is a prime number, Kv/Qp is a finite extension,

while the v-adic norm | · |v satisfies |p|v = 1/p= |p|1/e
p (i.e., e is the ramification index for

this extension). We let ov be the ring of v-adic integers of Kv, let π be a uniformizer of ov,

and we let kv be its residue field.

We let g be a positive integer, and let c be a positive real number. For two power

series F, G ∈ ov[[z1, . . . , zg]], we write F ≡ G (mod pc) if each coefficient aα of F − G sat-

isfies |aα|v ≤ |p|cv. Alternatively, for some m ∈ N, we use the notation F ≡ G (mod πm) if

F − G ∈ πmov[[z1, . . . , zg]]. More generally, for g-tuples of power series F := (F1, . . . , Fg)

and G := (G1, . . . , Gg) we write F ≡ G (mod pc) if Fi ≡ Gi (mod pc) for each i; similarly,

F ≡ G (mod πm) if Fi ≡ Gi (mod πm) for each i. Finally, for each n∈ N, we denote by Fn

the composition of F with itself n times. We note that in general, the composition Fn

may not be well-defined; however, it is well defined in the following special case: there

exists another g-tuple of power series H := (H1, . . . , Hg) such that

(1) each Hi ∈ ov[[z1, . . . , zg]]; and

(2) Fi = 1
π

· Hi(πz1, . . . , πzg) for each i = 1, . . . , g.

Essentially, the above conditions yield that the coefficients of each Fi converge suffi-

ciently fast to 0 so that the composition Fn is well defined.

We use the following result in Section 3.

Proposition 2.1. Let C ∈ o
g
v , let L ∈ GLg(ov), and let F1, . . . , Fg ∈ ov[[z1, . . . , zg]], such that

for z := (z1, . . . , zg), we have

F(z) := (F1, . . . , Fg)(z) ≡ C + Lz (mod π).

Let m = p1+r · #GLg(kv) where r is any nonnegative integer larger than (log(e) −
log(p− 1))/ log(2). Then, Fm(z) ≡ z (mod pc) for some c > 1/(p− 1). �

Proof. Let s := #GLg(kv); then letting id be the identity g-by-g matrix, we get Ls ≡ id

(mod π) (since L ∈ GLg(ov)). Thus, there exists some D ∈ o
g
v such that

F s(z) ≡ D + Lsz≡ D + z (mod π).

Then, F ps ≡ z (mod π). Hence, we are left to show that if F(z) ≡ z (mod π) and if r is

the least nonnegative integer > (log(e) − log(p− 1))/ log(2), then F pr
(z) ≡ z (mod pc) for
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Bounding Periods of Subvarieties 7

some c > 1/(p− 1). Clearly, if G(z) ≡ z (mod pc), then also G pk
(z) ≡ z (mod pc) for any

positive integer k.

If e < p− 1, then r = 0 works since |π |v = |p|1/e
v = p−1/e < p−1/(p−1). So, from now

on, we assume e ≥ p− 1.

We let F(z) = z + H(z), where each coefficient of H is in π · ov. Then, F p(z) =
z + pH(z) + H1(z), where H1 ≡ 0 (mod π2). Thus, F p(z) ≡ z (mod π2). By induction, we

obtain that

F pr
(z) ≡ z (mod πmin{e+1,2r}).

So, if r > (log(e) − log(p− 1))/ log(2), then |π |2r

v = p− 2r

e < p− 1
p−1 , while |π |e+1

v < |p|v ≤ p− 1
p−1 ,

and so indeed

F pr ≡ z (mod pc) for some c >
1

p− 1
,

which yields the desired conclusion. �

2.2 Algebraic geometry

We need the following application of the implicit function theorem on Banach spaces.

Proposition 2.2. Let (Kv, | · |v) be a finite extension of Qp with residue field kv, and let

ov be the ring of v-adic integers of Kv. Let X be a quasiprojective variety defined over

Kv, let X be a ov-scheme whose generic fiber is isomorphic to X, let r : X (Kv) −→ X̄ (kv)

be the usual reduction map to the special fiber X̄ of X , and let ι : X (ov) −→ X(Kv) be

the usual map coming from base extension. Let α ∈X (ov) such that ι(α) is a smooth

point on X and let Uᾱ = {β ∈X (ov) : r(α) = r(β)} and let U = ι(Uᾱ). Then, U is Zariski

dense in X. �

Proof. Let x = ι(α). We consider an affine chart containing the point x ∈ X after view-

ing X as a subset of the n-dimensional projective space defined over Kv. So, letting

d= dim(X), then there exist (n− d) polynomials fi, which we may suppose are defined

over ov in n variables z1, . . . , zn such that locally at x the variety X is the zero set of

the polynomials fi. Furthermore, since x is a nonsingular point for X, the Jacobian

matrix (d fi/dzj)i, j has rank n− d. Without loss of generality, we may assume the minor

(d fi/dzj)1≤i, j≤n−d is invertible.

We let x = (x1, . . . , xn) be the coordinates of the point x in the above affine chart;

each xi ∈ ov because x = ι(α). Then, Uᾱ is identified with points (z1, . . . , zn) ∈ on
v such

that zi ≡ xi (mod πv) for πv a generator for the maximal ideal in ov. Using the Implicit
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8 J. P. Bell et al.

Function Theorem (see [22, Theorem 5.9, p. 19]), we see that there exists a sufficiently

small p-adic neighborhood U0 of (xn−d+1, . . . , xn), there exists a p-adic neighborhood

V0 of (x1, . . . , xn−d), and there exists a p-adic analytic function g : U0 −→ V0 such that

g(xn−d+1, . . . , xn) = (x1, . . . , xn−d) and, moreover, for each γ ∈ U0, we have (g(γ ), γ ) ∈ X(Kv).

Furthermore, at the expense of shrinking both U0 and V0 we may assume that for each

γ ∈ U0, the point (g(γ ), γ ) is in U . Since U0 ⊂ Ad is a d-dimensional Kv-manifold we con-

clude that U is Zariski dense in X. �

The following result is a consequence of Proposition 2.2 for varieties defined

over number fields. Firstly, for any number field K, and any finite set S of places (con-

taining all archimedean places), we denote by oK,S the subring containing all u∈ K such

that |u|v ≤ 1 for each v /∈ S. Secondly, we denote by oK the ring of algebraic integers in the

number field K, and for each nonarchimedean place v of K, we denote by (oK)v the local-

ization of oK at v. Then, for each quasiprojective variety X defined over a number field K,

there exists a finite set S of places (containing all archimedean places) and there exists

a oK,S-scheme X whose generic fiber is isomorphic to X. In particular, we can prove the

following result for (oK)v-schemes.

Proposition 2.3. Let K be a number field, let v be a nonarchimedean place of K, and

let (oK)v be the localization of oK at the place v. Let X be a quasiprojective variety

defined over K, let X be an (oK)v-scheme whose generic fiber is isomorphic to X, let

r :X ((oK)v) −→ X̄ (kv) be the usual reduction map, and let ι : X ((oK)v) −→ X(K) be the

usual map coming from base extension. Let α ∈X ((oK)v) such that ι(α) is a smooth point

on X, and let U be the set of all y∈ X(K̄) such that the Zariski closure of y intersects X̄
at αv. Then, U is Zariski dense in X. �

Proof. Let Kv be the completion of K with respect to | · |v, and let ov be the ring of v-adic

integers of Kv. Let Xov
be the extension of X to Spec(ov), and let XKv

be its generic fiber.

Then, using Proposition 2.2, there exists a set U1 ⊂Xov
(ov) whose intersection with the

generic fiber XKv
is a Zariski dense subset of XKv

. We identify U1 with its intersection

with the generic fiber XKv
. Arguing as in the proof of Proposition 2.2, we consider a

system of coordinates for an affine subset X1 ⊂ X containing x (also defined over K),

and find an open set U0 ⊂ Ad(Kv) and a v-adic analytic function g : U0 −→ Kn−d
v such

that for each z∈ U0, we have (g(z), z) ∈ X1(Kv) ⊂ X(Kv). Furthermore, for each such point

(g(γ ), γ ) ∈ X(Kv), there exists a section β of Xov
whose intersection with the special fiber

is αv, while its intersection with the generic fiber is (g(γ ), γ ).
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Bounding Periods of Subvarieties 9

We let π : X1 −→ Ad be the projection on the last d coordinates. Then, using

the Fiber Dimension Theorem [33, Section 6.3], we conclude that there exists an open

Zariski subset U2 ⊆ Ad such that for each γ ∈ U2(K̄) ∩ U0, the fiber π−1(γ ) is a K̄-variety

of dimension 0 (here, we use that X and also X1 are defined over K). Since U0 ⊂ Ad is a

d-dimensional Kv-manifold and U2 is the complement in Ad of a proper algebraic sub-

variety defined over K̄, we conclude that U2(K̄) ∩ U0 is Zariski dense in Ad. For each

γ ∈ U2(K̄) ∩ U0, we have

(g(γ ), γ ) ∈ U1 ∩ π−1(γ ) ⊂ U1 ∩ X1(K̄).

Let h denote the map from U2(K̄) ∩ U0 to X1 sending γ to (g(γ ), γ ). Then, the dimension

of the closure of U2(K̄) ∩ U0 is equal to the dimension of the closure of h(U2(K̄) ∩ U0)

since π ◦ h is the identity on U2(K̄) ∩ U0 and π is finite-to-one on h(U2(K̄) ∩ U0). Since

this dimension is d, which is also the dimension of X1, we see that h(U2(K̄) ∩ U0) ⊆ U is

Zariski dense in X1 and thus U is Zariski dense in X. �

3 Burnside’s Problem

In this section, we continue with the notation from Section 2 for g, p, (Kv, | · |v), ov, π , kv,

e and r. In addition, assume p> 2.

Our first result gives an upper bound for the size of torsion of the automorphism

group of a quasiprojective variety X defined over a local field. So, our setup is as follows:

for a ov-scheme X , we let X̄ be its special fiber (over kv). For a point α ∈X (ov), we let

its residue class Uᾱ = {β ∈X (ov) : β̄ = ᾱ}, where γ̄ ∈ X̄ (kv) is the reduction modulo v of

γ ∈X (ov). Finally, we note that if ᾱ is a smooth point, then each β ∈ Uᾱ is also a smooth

point.

Theorem 3.1. Let X be a ov-scheme whose generic fiber is a K-variety of dimension

g, let Aut(X ) be the group of ov-scheme isomorphisms X −→X , and let G ⊆ Aut(X ) be a

torsion group. If X (ov) contains a smooth point, then G is finite and #G ≤ (#kv)
g(1+e)·(g+e+1

g ) ·
#GLg(kv) · #X̄ (kv). �

Proof. We let α ∈X (kv) be a smooth point and let G ᾱ be the subgroup of G consisting

of all σ such that σ ᾱ = ᾱ. Since [G : G ᾱ] ≤ #X̄ (kv), it will suffice to bound the size of G ᾱ.

Let Oᾱ denote the local ring of X at ᾱ, let mᾱ denote its maximal ideal, let Ôᾱ

denote the completion of Oᾱ at mᾱ, and let m̂ᾱ denote the maximal ideal of Ôᾱ. Since

α ∈X is smooth, the quotient Ôᾱ/(π) is regular. By the Cohen structure theorem for
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10 J. P. Bell et al.

regular local rings (see [11, Theorem 9] or [23, Theorem 29.7]), the quotient ring Ôᾱ/(π) is

isomorphic to a formal power series ring of the form kv[[y1, . . . , yg]]. Choosing zi ∈ m̂v for

i = 1, . . . , g such that the residue class of each zi is equal to yi, we obtain a minimal basis

{π, z1, . . . , zg} for m̂v (see [11]). Thus, we see that Ôᾱ is naturally isomorphic to a formal

power series ring ov[[z1, . . . , zg]].

Arguing exactly as in the proof of [7, Proposition 2.2] we then obtain that there

is a v-adic analytic isomorphism ι : Uᾱ −→ o
g
v , such that for any σ ∈ G ᾱ, there are power

series F1, . . . , Fg ∈ ov[[z1, . . . , zg]] with the properties that

(i) each Fi converges on o
g
v ;

(ii) for all (β1, . . . , βg) ∈ o
g
v , we have

ι(σ (ι−1(β1, . . . , βg))) = (F1(β1, . . . , βg), . . . , Fg(β1, . . . , βg)); and (3.1)

(iii) each Fi is congruent to a linear polynomial mod v (in other words, all the

coefficients of terms of degree > 1 are in the maximal ideal mv of ov). More-

over, for each i, we have

Fi(z1, . . . , zg) = 1

π
· Hi(πz1, . . . , πzg),

for some Hi ∈ ov[[z1, . . . , zg]].

We write �β := (β1, . . . , βg) and Fσ := ισ ι−1, we thus have

Fσ ( �β) ≡ Cσ + Lσ ( �β) (mod v) (3.2)

for a Cσ ∈ o
g
v and a g × g matrix Lσ with coefficients in ov. Let L̄σ be the reduction of

Lσ modulo π . Since σ is an étale map of ov-schemes, L̄σ must be invertible. We define

Dᾱ : G ᾱ −→ G
g
a(kv) � GLg(kv) by Dᾱ(σ ) = (Cσ , L̄σ ), where G

g
a(kv) � GLg(kv) is the group of

affine transformations of kg
v .

We clearly have Fσ1σ2 =Fσ1Fσ2 for σ1, σ2 ∈ G ᾱ. Reducing modulo π , it follows

from (3.2) that Dᾱ(σ1σ2) = Dᾱ(σ1)Dᾱ(σ2). Thus, Dᾱ is a group homomorphism; let G ᾱ,1 be

the kernel of Dᾱ.

Next, we bound #G ᾱ,1. We consider the map

Eᾱ : G ᾱ,1 −→ Vg := ((ov/π
e+1ov)[[z1, . . . , zg]]/(z1, . . . , zg)

e+2)g,

given by reducing each coordinate of Fσ ∈ G ᾱ,1 modulo πe+1. Using property (iii)

above, we observe that Eᾱ is well-defined and that it satisfies Eᾱ(σ1σ2) = Eᾱ(σ1)Eᾱ(σ2).
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Bounding Periods of Subvarieties 11

Furthermore, because each Eᾱ(σ ) for σ ∈ G ᾱ,1 is an invertible power series, we conclude

that Eᾱ restricts to a group homomorphism from G ᾱ,1 into the subgroup of units of Vg

(with respect to the composition of functions) consisting of F that satisfy the congru-

ence F(z) ≡ z (mod π). Since this group of units has at most (#kv)
eg·(g+e+1

g ) elements, we

are left to show that if σ ∈ ker Eᾱ, then σ is the identity.

Indeed, if Fσ (z) ≡ z (mod πe+1) for each z∈ o
g
v , then Fσ ( �β) ≡ �β (mod pc) for some

c > 1/(p− 1). Now fix �β; by [30, Theorem 1], there are v-adic analytic power series

θ1, . . . , θg ∈ ov[z], convergent on ov, such that

Fn
σ ( �β) = (θ1(n), . . . , θg(n))

for all n∈ N. Since σ has finite order, there is an Nσ such that FNσ
σ is the identity, we so

have θi(kNσ ) = βi for all k∈ N. Hence, θi(u) − βi has infinitely many zeros u∈ ov. Therefore,

θi(u) − βi is identically zero since any nonzero convergent power series on ov has finitely

many zeros in ov. Thus, Fσ ( �β) = �β for all �β ∈ o
g
v .

Hence, we have σ(z) = z for all z∈ Uᾱ. Since Uᾱ is Zariski dense in X (they are

both g-dimensional Kv-manifolds), we have that σ acts on identically on all of X. This

concludes our proof. �

The following result is an immediate corollary of Theorem 3.1 since each torsion

point of a semiabelian variety X induces a torsion element of Aut(X).

Corollary 3.2. Let X be a semiabelian ov-scheme whose generic fiber has dimension g.

Then, #Xtor(ov) ≤ (#kv)
g(1+e)·(g+e+1

g ) · #GLg(kv) · #X̄ (kv). �

If G is cyclic, then we can give a much better bound for #G. In fact, Theorem 1.1

yields an upper bound for the length of the orbit of any ov-subscheme Y of X which is

preperiodic under the action of an étale endomorphism Φ of X . In [18], Hutz finds upper

bounds for the length of orbits of preperiodic points on varieties of arbitrary dimension,

while Theorem 1.1 yields upper bounds for the lengths of orbits of preperiodic subvari-

eties of arbitrary dimension. We recall that r is the smallest nonnegative integer larger

than (log(e) − log(p− 1))/ log(2), where e is the ramification index of Kv/Qp.

Proof of Theorem 1.1. We use the same setup as in the proof of Theorem 3.1. Let β ∈
Y(ov) be a smooth point on Y. Since X̄ (kv) is finite, there is an � ≥ 0 such that the residue

class of Φ�(β) is periodic under Φ; we note this residue class by U0 and we denote Φ�(Y)

by Y ′. There is then an integer k such that Φk(U0) = U0 and k + � ≤ #X̄ (kv).
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12 J. P. Bell et al.

Since Φ�(β) ∈Y ′(ov) ∩ U0 is a smooth point on the generic fiber of Y ′,

Proposition 2.2 yields that Y ′(ov) ∩ U0 is Zariski dense in Y ′. Let x ∈ U0 ∩ Y ′(ov), let

m := p1+r · #GLg(kv), and let Ψ := Φmk. Arguing as in the proof of Theorem 3.1 (note that

in order to apply the strategy from [7, Proposition 2.2], we require that Φ is étale and

that x is smooth on X only), and also applying Proposition 2.1, we obtain that FΨ (z) ≡ z

(mod pc) for some c > 1/(p− 1). Hence, by [30, Theorem 1], there exists a v-adic analytic

function GΨ,x : ov −→ U0 such that GΨ,x(n) = Ψ n(x).

Now, let F be a polynomial in the ideal of functions vanishing on Y ′. Because Y ′ is

periodic, there exists a positive integer N such that ΦN(Y ′) =Y ′, and thus F (ΦnN(x)) = 0

for each n∈ N. On the other hand, GΨ,x(n) = Φnmk(x) and so, F (GΨ,x(nN)) = 0 for all n∈ N.

Since a nonzero v-adic analytic function cannot have infinitely many zeros in N ⊂ ov, we

conclude that F (GΨ,x(n)) = 0 for all n∈ N; in particular, F (Φmk(x)) = 0. Thus, Φmk(x) ∈Y ′,

and so Φkm(Y ′) =Y ′. Since k + � ≤ #X̄ (kv), we have that the length of the orbit of Y under

Φ is bounded by km + � ≤ m · #X̄ (kv) = p1+r · #GLg(kv) · #X̄ (kv). �

The following two results are simple consequences of Theorem 1.1.

Corollary 3.3. Let X be a ov-scheme whose generic fiber X has dimension g, let Φ : X −→
X be étale, and let α ∈X (ov) be a smooth preperiodic point. Then, the length of its orbit

is bounded by p1+r · #GLg(kv) · #X̄ (kv). �

Corollary 3.4. Let X be a semiabelian ov-scheme whose generic fiber has dimen-

sion g. Then, each torsion point of X (ov) has order bounded above by p1+r · #GLg(kv) ·
#X̄ (kv). �

Our arguments above allow us to show that for any field K of characteristic 0,

and for any finitely generated extension L/K, then each finitely generated torsion sub-

group of Aut(L) fixing K is finite, that is, Burnside’s problem has a positive answer.

At the expense of replacing L by a finite extension and then viewing L as the function

field of a geometrically irreducible quasiprojective variety defined over K, we obtain the

geometric formulation of the Burnside problem from Theorem 1.2.

Proof of Theorem 1.2. Let σ1, . . . , σm be a finite set of generators for H , and let K be a

finitely generated field such that X, σ1, . . . , σm are all defined over K. After passing to a

finite extension of the base, we may assume that X(K) contains a smooth point α. Let

R be a finitely generated Z-algebra containing all the coefficients of all the polynomials
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Bounding Periods of Subvarieties 13

defining X in some projective space, along with all the coefficients of all the polynomials

defining all the σi locally, as in the proof of [7, Theorem 4.1]. By [7, Proposition 4.3], since

a finite intersection of dense open subsets is dense, we see that there is a dense open

subset U of SpecR such that:

(i) there is a scheme XU that is quasiprojective over U , and whose generic fiber

equals X;

(ii) each fiber of XU is geometrically irreducible;

(iii) each σi extends to an automorphism σiU of XU ;

(iv) α extends to a smooth section U −→XU .

Now, arguing as in [7, Proposition 4.4], and using [6, Lemma 3.1], we see that there is an

embedding of R into Zp (for some prime p≥ 5), and a Zp-scheme XZp such that

(i) XZp is quasiprojective over Zp, and its generic fiber equals X;

(ii) both the generic and the special fiber of XZp are geometrically irreducible;

(iii) each σi extends to an automorphism (σi)Zp of XZp;

(iv) α extends to a smooth section SpecZp −→XZp.

Then Theorem 3.1 finishes our proof. �

4 Bounds on the Number of Periodic Hypersurfaces

In this section, we give explicit bounds on the number of σ -periodic hypersurfaces when

σ is an automorphism of an irreducible quasi-projective variety X which preserves no

rational fibration. In particular, we show the number of σ -periodic hypersurfaces is

finite unless there exists a nonconstant rational function f such that f ◦ σ = f . More-

over, we are able to give a bound for both the lengths of periods and the number of

σ -periodic hypersurfaces in terms of geometric data, although this bound depends upon

the field of definition for σ . We note that Cantat [10, Theorem B] proved there exists a

bound N(σ ) (depending on σ ) such that if there exist more than N(σ ) irreducible periodic

hypersurfaces, then σ must preserve a nonconstant rational fibration. In the case that σ

is defined over a number field K and there is a point x ∈ X(K) with a dense orbit under

σ , we are able to give a bound that depends only upon the dimension of X and the Picard

number of a projective closure (see Theorem 1.5). We begin with a lemma about ranks of

multiplicative subgroups of a field that are stable under an automorphism of the field.

As a matter of notation, for an automorphism σ of a field K, we denote by Kσ the set of

all fixed points of σ .
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14 J. P. Bell et al.

Proposition 4.1. Let k be an algebraically closed of characteristic zero and let K be a

finitely generated field extension of k. Suppose that σ : K → K is a k-algebra automor-

phism with Kσ = k. If G is a finitely generated σ -invariant subgroup of K∗, then the rank

of G/(G ∩ k∗) is at most trdegk(K). �

Proof. Suppose, toward a contradiction, that the rank of G/(G ∩ k∗) is m > trdegk(K)

and suppose that x1, . . . , xm are elements of G whose images in G/(G ∩ k∗) generate a

free abelian group of rank m. Then, there is some nonzero polynomial P (t1, . . . , tm) ∈
k[t±1

1 , . . . , t±1
m ] such that P (x1, . . . , xm) = 0. We write P as

∑

j1,..., jm

cj1,..., jmt j1
1 · · · t jm

m

and we let

N := #{( j1, . . . , jm) : cj1,..., jm �= 0}.

We may take P so that N > 1 is minimal. By multiplying P by an appropriate monomial

and nonzero constant, we may also assume that the constant coefficient of P is equal to

one. Then, we have

P (σ i(x1), . . . , σ
i(xm)) = 0

for all i ∈ Z. In other words, for each integer i,

(zj1,..., jm)( j1,..., jm) = (σ i(xj1
1 · · · xjm

m ))( j1,..., jm) ∈ GN

is a solution to the S-unit equation

∑

j1,..., jm

cj1,..., jm zj1,..., jm = 0.

By minimality of N, each of these solutions is primitive; that is, no proper subsum van-

ishes. (If some proper nontrivial subsum of

∑

j1,..., jm

cj1,..., jmσ i(x1)
j1 · · · σ i(xm) jm

vanished for some i, then we could apply σ−i to this subsum and get a smaller N, con-

tradicting minimality.) By the theory of S-unit equations for fields of characteristic zero

(see Evertse et al. [15]), we know there are only finitely many primitive solutions in GN

to the equation ∑

j1,..., jm

cj1,..., jm zj1,..., jm = 0
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Bounding Periods of Subvarieties 15

up to multiplication by elements of G. It follows that there is some M > 0 and some y∈ G

such that

σ M(xj1
1 · · · xjm

m ) = yxj1
1 · · · xjm

m

whenever cj1,..., jm �= 0. Since c0,...,0 �= 0, we see that y= 1. Thus, if we pick ( j1, . . . , jm) �=
(0, . . . , 0) with cj1,..., jm �= 0, then σ M fixes xj1

1 · · · xjm
m , which by assumption is not in k∗, and

so σ M has a fixed field of transcendence degree at least one over k. Since the fixed field

of σ M is a finite extension of the fixed field of σ , we see that the fixed field of σ has

transcendence degree at least one over k, a contradiction. The result follows. �

As a corollary, we obtain the following result.

Theorem 4.2. Let K be a finitely generated extension of Q and let X be an irre-

ducible quasi-projective variety defined over K. Then, there exists a positive constant

N = N(X, K) such that whenever σ ∈ AutK(X) has the property that there are no noncon-

stant f ∈ K̄(X) with f ◦ σ = f there are at most N σ -periodic hypersurfaces and they all

have period at most N. Moreover, N can be taken to be rank(Cl(X̃)) + dim(X), where X̃ is

the normalization of X. �

We note that when Y is a normal quasi-projective variety over a finitely generated

extension of Q, we have Cl(Y) has finite rank [8, Lemma 5.6 (1)]. We will find it convenient

to regard K as a subfield of C throughout.

Proof of Theorem 4.2. It is no loss of generality to assume that X is normal. Suppose

that there is no nonconstant f ∈ K̄(X) with f ◦ σ = f . Let N := rank(Cl(X)) + dim(X), and

suppose that we have N + 1 distinct σ -periodic hypersurfaces Y0, . . . , YN . By replac-

ing σ by an iterate, we may assume that σ(Yi) = Yi for all i. By relabeling if neces-

sary, we may assume that there is some m ≤ N − dim(X) − 1 such that [Y0], . . . , [Ym]

generate a free Z-module of Cl(Y) and that for i > m, [Y0], . . . , [Ym], [Yi] are depen-

dent in Cl(X). This means that for i ∈ {N − dim(X), . . . , N}, there is a principal divisor

( fi) = ci,i[Yi] + ∑m
j=0 ci, j[Yj], where the ci, j are integers and ci,i is nonzero. By construc-

tion, we have fi ◦ σ has the same divisor as fi for i = N − dim(X), . . . , N. Also, the fi

generate a free abelian subgroup of C(X)∗, which can be seen by noting that the valua-

tion on C(X) induced by Yi, νYi , has the property that νYi ( fi) is nonzero but νYj ( fi) = 0 for

j ∈ {N − dim(X), . . . , N} \ {i}.
Since fi ◦ σ has the same divisor as fi, we see that fi ◦ σ/ fi is in Γ (X,OX)∗. Let

G denote the subgroup of C(X)∗/C∗ generated by Γ (X,OX)∗/C∗ and by the images of the
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16 J. P. Bell et al.

fi. Then, we have shown that the rank of G is at least dim(X) + 1. Moreover, G is finitely

generated since Γ (X,OX)∗/C∗ is finitely generated [8, Lemma 5.6(2)]. Furthermore, σ

induces an automorphism of G since Γ (X,OX)∗/C∗ is closed under application of σ and

since fi ◦ σ ∈ Γ (X,OX)∗ fi. We now let g1, . . . , gs be elements of C(X)∗ whose images in

C(X)∗/C∗ generate G. Let G0 denote the subgroup of C(X)∗ generated by g1, . . . , gs. Then,

there exist complex numbers λ1, . . . , λs such that gi ◦ σ ∈ λiG0. Let H denote the sub-

group of C(X)∗ generated by G0 and by λ1, . . . , λs. Then, H is finitely generated and by

construction we have h ◦ σ ∈ H for all h∈ H . Furthermore, the rank of H/(H ∩ C∗) is at

least dim(X) + 1, since its rank is at least as large as the rank of G. Lemma 4.1 gives a

contradiction. The result follows. �

We note that for any complex variety X with automorphism σ , there is some

finitely generated extension K of Q such that X is defined over K and such that σ ∈
AutK(X) and so Theorem 4.2 can be applied using the value of N(X, K) given in the

statement of the theorem.

Also as a corollary of Theorem 4.2, we can prove that for any quasiprojective

variety X defined over Q̄ under the action of an automorphism Φ which does not pre-

serve a rational fibration, there exist nonperiodic codimension-1 subvarieties (defined

over Q̄). Indeed, using Theorem 4.2, there exist finitely many codimension-1 periodic

subvarieties Yi; in addition, let N1 ∈ N such that each Yi is fixed by ΦN1 . So, we can find an

algebraic point x ∈ X(Q̄) which is not contained in the above finitely many codimension-

1 subvarieties Yi. Then we simply take Y be the intersection of X (inside some projective

space) with a hyperplane (defined over Q̄) passing through x, but not containing ΦN1(x);

then Y is not periodic (since if it were, then it would be fixed by ΦN1 but on the other

hand, ΦN1(x) /∈ Y(Q̄)), and therefore its orbit under Φ is Zariski dense in X.

5 Subvarieties with Zariski Dense Orbits

The setup for this Section is as follows: X is a quasiprojective variety defined over C,

and Φ is an automorphism of X that preserves no nonconstant rational fibration. Our

goal is to prove Theorem 1.3; we use Theorems 1.1 and 4.2.

Proof of Theorem 1.3. Arguing as before, for a suitable prime p≥ 5, we find a Zp-

scheme X such that

(i) X is the generic fiber of X , while the special fiber X̄ of X is a geometrically

irreducible quasiprojective variety;
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Bounding Periods of Subvarieties 17

(ii) Φ extends to an automorphism of X ;

(iii) there exists x0 ∈X (Zp) such that its reduction x0 modulo p is a smooth point

of X̄ .

Let U0 := {x ∈X (Zp) : x̄ = x0} be the residue class of x0 (since x0 is a smooth point on

X̄ , then each x ∈ U0 is also smooth on X ). Furthermore, we identify each section in U0

with its intersection with the generic fiber X. Using Theorem 1.1, there exists a positive

integer N1 such that each periodic subvariety Y which contains a point from U0 which

is smooth also on Y has period bounded above by N1.

By Theorem 4.2, there exist at most finitely many codimension-1 subvarieties

which are fixed by ΦN1 . Let Y1 be the union of all these codimension-1 subvarieties.

On the other hand, by the definition of N1, if x ∈ U0 is (pre)periodic, then ΦN1(x) = x.

Because Φ has infinite order (since it preserves no nonconstant rational fibration), the

vanishing locus for the equation ΦN1(x) = x is a proper subvariety Y0 of X . In conclusion,

Y0 ∪ Y1 is a proper subvariety of X and therefore, there exists a Zariski dense set of

points x ∈ U0 \ (Y ∪ Y1)(Zp) (because U0 is a p-adic manifold of dimension larger than

dim(Y0 ∪ Y1)). Furthermore, we can choose x ∈ X(Q̄) by Proposition 2.3; finally, note that

x is smooth since it is in U0.

For each such point x ∈ X(Q̄) ∩ U0 which is not contained in Y0 ∪ Y1, we can find

a codimension-2 subvariety Y (defined over Q̄) whose orbit under Φ is Zariski dense in

X. Indeed, we consider X embedded into a large projective space Pm and then intersect

X with two (generic) hyperplane sections H1 and H2 (defined over Q̄) which pass through

x, but not through ΦN1(x) (note that ΦN1(x) �= x because x /∈ Y0). Furthermore, since H1

and H2 are generic sections passing through x, then Y := X ∩ H1 ∩ H2 is a codimension-2

irreducible subvariety defined over Q̄, and moreover x ∈ Y is a smooth point. We claim

that Y is not periodic under Φ. Otherwise, since Y intersects U0, then it must be fixed by

ΦN1 (by Theorem 1.1 and our choice for N1). However, x ∈ Y, but ΦN1(x) /∈ Y, which shows

that Y is not fixed by ΦN1 , and thus Y is not periodic under the action of Φ. Let Z be the

Zariski closure of the orbit of Y under the action of Φ. Since Y is not periodic under Φ,

then dim(Z) > dim(Y). Now, if dim(Z) < dim(X), then Z is a codimension-1 subvariety,

and in addition it is fixed by ΦN1 . Then it has to be contained in Y1. However, this is

impossible since x ∈ Z but x /∈ Y1. In conclusion, Z = X, as desired. �

In particular, if the codimension-2 subvariety Y from the conclusion of

Theorem 1.3 has the property that Y(L) is Zariski dense in Y (for some number field

L containing the field of definition for Φ), then X(L) is Zariski dense in X. So, our
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18 J. P. Bell et al.

Theorem 1.3 may be used to prove that certain varieties X have a Zariski dense set of

rational points, by reducing the problem to finding a potentially dense set of rational

points on a codimension-2 subvariety Y of X.

In the case that σ : X → X is defined over a number field K and there is a point

x ∈ X(K) with dense orbit under σ , we obtain a much stronger upper bound (that has

no dependence on the number field) for the period of codimension-1 subvarieties of X

periodic under the automorphism.

Proof of Theorem 1.5. We extend σ to a map X ′ −→X ′, where X ′ is defined over the ring

of integers oK . Let R be the localization of oK away from all at the primes of bad reduc-

tion. Then, we obtain an automorphism of R-schemes σ0 : X −→X . Now, let Y be some

projective closure for X ; then x meets Y \ X over at most finitely many finite primes, call

this set T , and let R′ denote the localization of R away from T . Let Y be the generic fiber

of Y.

Let W be an invariant subvariety of X. Suppose that W has at least dim X −
h1(Y,OY) + ρ + 1 geometric components, where ρ is the Picard number of Y (the rank of

its Néron–Severi group). Then, clearly x is not in W so there is an at most finite set T ′

of primes at which x meets W. Let S = T ∪ T ′ ∪ (SpecoK \ SpecR). Then, x is S-integral

relative to W and, since σ−1(W) = W, we see that σn(x) is S-integral relative to W for all

n (if σn(x) met W modulo a prime, then x would meet σ−n(W) modulo that same prime).

But by a result of Vojta [34, Corollary 0.3], this would mean that the orbit of x was not

dense, since W has at least dim X − h1(Y,OY) + ρ + 1 geometric components, which gives

a contradiction. �

6 Other Questions

Poonen [29] has proposed a variant of Morton–Silverman’s uniform boundedness

conjecture, where the morphisms vary across a general families of self-maps of vari-

eties rather than just the universal family of degree-d self-maps PN −→ PN . In Poonen’s

set-up, some fibers may have infinitely many preperiodic points. Although that cannot

happen in the case of preperiodic points of morphisms Pn −→ Pn (because of Northcott’s

theorem), a morphism Pn −→ Pn can have infinitely many positive-dimensional periodic

subvarieties. For example, if f is a homogeneous two-variable polynomial of degree n,

then the morphism P2 −→ P2 given by [x : y : z] �→ [ f(x, z) : f(y, z) : zn] has infinitely many

f-invariant curves of the form [xznk−1 : fk(x, z) : znk
], where fk is the homogenized kth

iterate of the dehomogenized one-variable polynomial x �→ f(x, 1). On the other hand, it
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Bounding Periods of Subvarieties 19

is possible that one may be able to bound the periods of the f-periodic subvarieties in

general.

To state our question, we will need a little terminology. To be clear, we will say

that V is a K-subvariety of X if V is a geometrically irreducible subvariety of X defined

over K. Since so little is known about this question, we will ask it in slightly less gen-

erality than Poonen uses. Given a morphism Φ : X −→ X and a K-subvariety V of X such

that V is periodic under the action of Φ, we define PerΦ(V) to be the smallest nsuch that

Φn(V) ⊆ V .

Question 6.1. Let π :F −→ S be a morphism of varieties defined over a number field K

and let Φ :F −→F be an S-morphism. For s ∈ S(K), we let Fs be the fiber φ−1(s) and let

Φs be the restriction of Φ to Fs. Is there a constant NF such that for any s ∈ S(K) and any

periodic K-subvariety V of Fs, we have PerΦs(V) ≤ NF? �

Even in the case where one can assign canonical heights to subvarieties of X,

there may be subvarieties of X of positive dimension having canonical height 0 that are

not preperiodic (see [16]). Thus, we do not know the answer to Question 6.1 even in the

case of a constant family of maps.

Question 6.2. Let Φ : X −→ X be a morphism of varieties defined over a number field K.

Is there a constant NX such that for any periodic K-subvariety V of X, we have

PerΦ(V) ≤ NX? �

We may also ask an analog of Question 6.1 for finite subgroups of automorphism

groups.

Question 6.3. Let π :F −→ S be a morphism of varieties defined over a number field K.

For s ∈ S(K), we let Fs denote the fiber π−1(s). Must the set

{n| there is an s ∈ S(K) such that Aut(Fs) has a subgroup of order n}

be finite? �

The theorems of Mazur [24] and Merel [26] show that Questions 6.1 and 6.3 have

a positive answer when X is a family of elliptic curves. Similarly, work of Kondō [20]

shows that Question 6.3 has a positive answer when F is a family of K3 surfaces.

As with Question 6.1, we do not know the answer to Question 6.3 even in the

constant family case. On the other hand, the bound in Theorem 3.1 depends only on
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the dimension of X and the number of points in the special fiber of X at the place v;

by the Weil bounds of Deligne [12, 13], the number of points on this special fiber can

be bounded in terms of #kv, the dimension of X, and the Betti numbers of X. Thus, one

might expect that there is a bound on the largest finite subgroup of Aut(Fs) having good

reduction at v as Fs varies in a family.
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