Take Home Midterm

1. For each of the following rings, explain whether or not the ring integrally closed:
(a) The polynomial right $\mathbb{Q}[t]$.
(b) The ring $\mathbb{Z}[\sqrt[5]{2}]$.
(c) The ring $\mathbb{Z}[\sqrt[3]{37}]$.
(d) The ring $\mathbb{Z}[i, \sqrt{3}]$.
2. In an earlier homework, you should that for any $\alpha \in \mathbb{C}$, there is an element β of the right $\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$ such that $|\alpha-\beta|<1$ where $|\cdot|$ is the usual norm on \mathbb{C} given by $|a+i b|=\sqrt{a^{2}+b^{2}}$. In this problem we examine whether or not this is true for some other additive subgroups of \mathbb{C}, which do not have a ring structure.
(a) Let

$$
\mathcal{L}_{1}=\left\{\left.a+b \frac{1+\sqrt{-12}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

True or false and explain: for every $\alpha \in \mathbb{C}$, there is a $\beta \in \mathcal{L}_{1}$ such that $|\alpha-\beta|<1$.
(b) Let

$$
\mathcal{L}_{2}=\left\{\left.a+b \frac{1+\sqrt{-14}}{2} \right\rvert\, a, b \in \mathbb{Z}\right\} .
$$

True or false and explain: for every $\alpha \in \mathbb{C}$, there is a $\beta \in \mathcal{L}_{2}$ such that $|\alpha-\beta|<1$.
3. For each of the following, explain why the statement is True or give a counterexample showing that it is False. In all of the following R is a ring (commutative with identity).
(a) If R is a Noetherian ring and I is a proper ideal of R, then R / I is a Noetherian ring.
(b) If I is a proper ideal of R and R / I is a Noetherian ring, then R is a Noetherian ring.
(c) If R / a is a Noetherian ring for all nonzero $a \in R$, then R is a Noetherian ring.
(d) If R is a Noetherian ring and $\alpha_{1}, \ldots, \alpha_{m}$ are integral over R in some extension $R \subseteq B$, then $R\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ is a Notherian ring.
4. For each of the following rings R, find all nonzero primes \mathfrak{q} such that $R_{\mathfrak{q}} \mathfrak{q}$ is not principal (you can write these as $\mathfrak{q}=\left(p, g_{i}(\alpha)\right)$ for $R=\mathbb{Z}[\alpha]$, as in class).
(a) $\mathbb{Z}[\sqrt{27}]$.
(b) $\mathbb{Z}[\sqrt{5}]$.
(c) $\mathbb{Z}[\sqrt[3]{19]}$
5. Let R be an integral domain with field of fractions K. Let $I \subseteq K$ have the property that $a I \subseteq I$ for all $a \in R$; in other words, I is an R-submodule or K. As in class we define

$$
(R: I)=\{x \in K \mid x I \subseteq R\} .
$$

(a) Show that if I is finitely generated, then $(R: I) \neq\{0\}$.
(b) Show (via an example) that there are R and I such that $(R$: $I)=\{0\}$.
6. Problem 6 on Page 58.
7. Problem 7 on Page 58
8. Problem 2 on p. 62.
9. Let L be a degree n field extension of \mathbb{Q}. Let $B \subset L$ be a ring that is integral over \mathbb{Z} and has field of fractions L. Let $\sigma_{1}, \ldots, \sigma_{n}$ be the n distinct embeddings $\sigma: L \longrightarrow \mathbb{C}$. Show that for any basis w_{1}, \ldots, w_{n} for B as an A-module, we have

$$
\Delta(B / \mathbb{Z})=\left(\operatorname{det}\left[\sigma_{i}\left(w_{j}\right)\right]\right)^{2} .
$$

[Hint: Multiply $\left[\sigma_{i}\left(w_{j}\right)\right.$] by its transpose and use the fact (that you should prove) that $\mathrm{T}_{L / K}(y)=\sigma_{1}(y)+\cdots+\sigma_{n}(y)$ for any $\left.y \in L.\right]$
10. Let R_{K} be Dedekind domain with field of fractions K. Let E and L be finite separable extensions of K, of degree m and n, respectively, and let R_{E} and R_{L} be the integral closures of R_{K} in E and L respectively. Suppose that \mathcal{P} ramifies completely in R_{E}, i. e. that $\mathcal{P} R_{E}=\mathcal{Q}^{m}$. Suppose also that $\mathcal{P} R_{L}=\mathcal{M}_{1}^{e_{1}} \cdots \mathcal{M}^{e_{t}}$ where $\operatorname{gcd}\left(e_{i}, m\right)=1$ for some e_{i}. Show that E and L are linearly disjoint over K. [Hint: factor \mathcal{P} in the integral closure of R_{K} in $E \cdot L$.]
11. Let p be a prime and let a be a positive integer that is not a perfect p-th power.
(a) Show that $x^{p}-a$ is irreducible over \mathbb{Z}.
(b) Let α be a root of $x^{p}-a$ and let ξ_{p} be a primitive p-th root of unity. Show that $\mathbb{Q}\left(\xi_{p}\right)$ and $\mathbb{Q}(\alpha)$ are linearly disjoint over \mathbb{Q}.
(c) Let K be the splitting field of $x^{p}-a$ over \mathbb{Q}. Describe its Galois group over \mathbb{Q} (as a semidirect product of abelian groups).]
12. Let m be a positive integer and let a be an integer with at least one prime factor p such that p^{2} doesn't divide a and p doesn't divide m. Show that $\mathbb{Q}\left(\xi_{m}\right)$ and $\mathbb{Q}(\sqrt[m]{a})$ are linearly disjoint.

