## Take Home Final On Quadratic Reciprocity

In all of the problems below, $q$ is an odd prime and $\xi_{q}$ is a primtive $q$-th root of unity. We let $\epsilon(q)=(-1)^{\frac{q-1}{2}} q$.

For any integer $a$ and any prime $p$, we define $\left(\frac{a}{p}\right)$ to be 0 if $p$ divides $a, 1$ is $a$ is prime to $p$ and $a$ is is square modulo $p$, and -1 if $a$ is not a square modulo $p$. It is easily seen that

$$
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right) .
$$

1. Let $p$ be any prime and let $q$ be as above with $q \neq p$. Show that

$$
\left(\frac{p}{q}\right)=1
$$

if and only if $p$ factors as into an even number of primes in $\mathbb{Q}\left(\xi_{q}\right)$. [Hint: Find the degrees of $\mathbb{Z}\left[\xi_{q}\right] / \mathcal{P}$ for the primes $\mathcal{P}$ such that $\mathcal{P} \cap \mathbb{Z}\left[\xi_{q}\right]=p$.]
2. Show that the unique quadratic extension contained in $\mathbb{Q}\left(\xi_{q}\right)$ is $\mathbb{Q}(\epsilon(q))$. [Hint: Unicity follows immediately from the fact that the extension is cyclic. To see what the unique quadratic is, consider ramification.]
3. Let $G$ be a cyclic group of even order acting transitively on a finite set $S$, let $s \in S$, and let $H_{s}$ be the set of $g \in G$ such that $g s=s$. Let $G^{\prime}$ be the unique subgroup of index 2 in $G$.
(a) Show that for any subgroup $H$ of $G$, we have $[G: H]=\left[G^{\prime}: H\right]$ if and only if $H$ is not contained in $G^{\prime}$.
(b) Show that $S$ is even if and only if $H_{s} \subseteq G^{\prime}$.
(c) Show $S$ is odd if and only if $G^{\prime}$ acts transitively on $S$. [Hint: Use (a) and (b) along with the fact that $|S|=\left[G: H_{s}\right]$.]
4. Let $G$ be the Galois group of $\mathbb{Q}\left(\xi_{q}\right)$ over $\mathbb{Q}$ and let $G^{\prime}$ be the unique subgroup of index 2 in $G$.
(a) Show that $\mathbb{Q}\left(\xi_{q}\right)^{G^{\prime}}=\mathbb{Q}(\epsilon(q))$ (i.e. the fixed field of $G^{\prime}$ is $\left.\mathbb{Q}(\epsilon(q))\right)$.
(b) Show that $p$ factors into an even number of primes in $\mathbb{Z}\left[\xi_{q}\right]$ if and only if $p$ factors into two primes in $\mathbb{Z}\left[\frac{1+\sqrt{\epsilon(q)}}{2}\right]$. [Hint: Use 3 along with the fact that $G$ acts transitively on the primes of $\mathbb{Z}\left[\xi_{q}\right]$ lying over $\left.p\right]$
5. Let $a$ be an integer that is prime to $q$. Show that $a^{(p-1) / 2}$ is equal to 1 if $a$ is square modulo $q$ and equal to -1 is $a$ is not a square modulo $q$.
6. Let $p$ be odd. Use the previous problems to show that

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{(p-1)(q-1)}{4}} .
$$

