Math 568 Problem Set \#9 Due 12/8/14

1. Show that $\left|\mathrm{Cl}\left(\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]\right)\right|=1$.
2. Show that $\left|\mathrm{Cl}\left(\mathbb{Z}\left[\frac{1+\sqrt{29}}{2}\right]\right)\right|=1$.
3. Show that $\left|\mathrm{Cl}\left(\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]\right)\right|=1$.
4. Use your result from \#3 to find all the integers solutions x and y to the equation $x^{2}+19=y^{3}$, the equation we studied the first day of class.
5. Let $d<-1$ be a squarefree number congruent to $3(\bmod 4)$. Show that the prime ideal $\mathcal{P} \subseteq \mathbb{Z}[\sqrt{d}]$ with $\mathcal{P} \cap \mathbb{Z}=2$ has order 2 in the class group $\mathrm{Cl}(\mathbb{Z}[\sqrt{d}])$. [Hint: You may want to try $d=-5$ separately from the other cases.]
6. Calculate the class group of $\mathbb{Z}[\sqrt{-5}]$.
7. Suppose that $d<-7$ is a squarefree number that is congruent to $1(\bmod 8)$. Show that $\left\lvert\, \operatorname{Cl}\left[\left.\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \right\rvert\, \neq 1\right.$. [Hint: Look at one of the primes lying over 2]. \right.
8. Let $d<-1$ be composite and squarefree. Let

$$
\omega=\left\{\begin{array}{rll}
\sqrt{d} & : & d \equiv 2,3 \quad(\bmod 4) \\
\frac{1+\sqrt{d}}{2} & : & d \equiv 1 \quad(\bmod 4)
\end{array}\right.
$$

Show that $|\operatorname{Cl}(\mathbb{Z}[\omega])| \neq 1$. [Hint: Look at the prime in $\mathbb{Z}[\omega]$ lying over the smallest positive prime factor of d. You may want to treat the case $d=-6$ separately from the others.]

