Math 568 Problem Set \#7 Due 11/3/2014

1. Let a be a square-free positive integer. Let p be a prime number. Show that $\mathbb{Z}[\sqrt[p]{a}]$ is integrally closed if and only if $a^{p}-a \not \equiv 0\left(\bmod p^{2}\right)$.
2. Let (\cdot, \cdot) be a symmetric bilinear form on a vector space V over a field K. Let $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\left\{w_{1}, \ldots, w_{n}\right\}$ be bases for V over K. Let M be the matrix whose $i j$-th coefficient is $\left(v_{i}, v_{j}\right)$. For each w_{j}, we write $w_{j}=\sum_{i=1}^{m} d_{i j} v_{i}$, and let D be the matrix whose $i j$-th coefficient is $d_{i j}$. Let N be the matrix whose $i j$-th coefficient is (w_{i}, w_{j}). Show that

$$
N=D^{t} M D
$$

3. Let D be an $n \times n$ matrix with coefficients in an integral domain R. Show that if det D is a unit in R, then there is an $n \times n$ matrix E with coefficients in R such that $D E=E D=I_{n}$ (where I_{n} is the identity $n \times n$ matrix). [Hint: You can use the classical adjoint.]
4. Let A be a DVR with maximal ideal \mathcal{P} and field of fractions K. Let $B_{1} \subseteq B_{2}$ be integral extensions of A such that the B_{1} and B_{2} have field of fractions equal to L, where L is a finite separable extension of K. Show that $\Delta\left(B_{1} / A\right)=\mathcal{P}^{2 r} \Delta\left(B_{2} / A\right)$, for some $r \geq 0$. Then show that $r=0$ if and only if $B_{1}=B_{2}$. [Hint:Use problems 2 and 3.]
5. Janusz p.42, Ex. 4.
6. Let A be a Dedekind domain with field of fractions K. Let L and L^{\prime} be finite separable extensions of K and suppose that there exist $\alpha \in L$ and $\alpha^{\prime} \in L^{\prime}$ such that the integral closure of A in L is $A[\alpha]$ and the integral closure of A in L^{\prime} is $A\left[\alpha^{\prime}\right]$. Suppose furthermore that $\Delta(A[\alpha] / A)+\Delta\left(A\left[\alpha^{\prime}\right] / A\right)=A$ (as ideals). Let M be the compositum $L L^{\prime}$ over K. Is the integral closure of A in M necessarily equal to $A\left[\alpha, \alpha^{\prime}\right]$? Give a proof or a counterexample. [Hint: Use criterion from class on when primes are invertible.]
7. Let p and q be primes in \mathbb{Z} with $p \neq q$. Find the integral closure of \mathbb{Z} in $\mathbb{Q}\left(\xi_{p q}\right)$ where $\xi_{p q}$ is a primitive $p q$-th root of unity. Justify your answer.
8. Let $\xi_{p^{n}}$ be a primitive p^{n}-th root of unity for $n \geq 1$. Calculate $\mathrm{N}_{\mathbb{Q}\left(\xi_{p^{n}}\right) / \mathbb{Q}}\left(1-\xi_{p^{n}}\right)$.
