(The first three problems are from the book. You may assume that L is separable over K in all of them.)

1. p. 29, Ex. 4
2. p. 30, Ex. 5
3. p. 32 Ex. 7
4. Let M be an $n \times n$ matrix over a field K. Suppose that $M^{n}=0$ for some positive integer n. Show that the trace of M must be 0 .
5. Let K be a field and let $B \supseteq K$ be an integral ring extension of K that is finitely generated as a K-module (B is not necessarily an integral domain). Then every element $x \in B$ gives rise to a multiplication map $r_{x}: b \mapsto x b$ from B to B. The map r_{x} is clearly a K-linear map and we can define its trace $\mathrm{T}_{B / K}(x)$ in the usual way. Show that the bilinear form $(x, y)=\mathrm{T}_{B / K}(x y)$ is degenerate whenever there exists an $x \in B$ such that $x \neq 0$ and for which $x^{n}=0$ for some positive integer n.
6. Let $F(x)=x^{n}-a$. Find a formula for $\Delta(F)$ in terms of a and n.
7. Let ξ_{p} be a p-th primitive root of unity. Show that $\mathbb{Z}\left[\xi_{p}\right]$ is integrally closed.
8. Let $B=\mathbb{Z}\left[\xi_{3}\right]$. Factor $p B$ for p equal to each of the following: $2,3,5,7,11,13$.
9. Let α satisfy $\alpha^{3}-\alpha^{2}+5$ and let $B=\mathbb{Z}[\alpha]$. Find all the primes $\mathcal{Q} \subset B$ lying above the following primes in $\mathbb{Z}: 2,3,5,7,11$.
