Math 568 Problem Set \#5 - Due October 20

1. Let R be a domain such that:
(1) For every nonzero prime \mathfrak{p} of R, the localization $R_{\mathfrak{p}}$ is a DVR; and
(2) Every nonzero ideal I of R is contained in at most finitely many primes \mathfrak{p} of R.
Show that R must be a Dedekind domain. [Hint: It is sufficient to show it is Noetherian, for example.]
2. Let K be a field and let L be a totally inseparable extension of K such that $[L: K]=q$. Let A be a Dedekind domain whose field of fractions is A and let B be the integral closure of A in L. Show that for each prime \mathfrak{p} of A there is a unique prime \mathfrak{q} of B such that $\mathfrak{q} \cap A=\mathfrak{p}$. [Consider the map $\varphi: B \longrightarrow A$ given by $\varphi(x)=x^{q}$ and show that for any prime \mathfrak{p} in A we have $\varphi^{-1}(\mathfrak{p}) \cap A=\mathfrak{p}$ and for any prime \mathfrak{q} in B, we have $\varphi^{-1}(\mathfrak{q} \cap A)=\mathfrak{q}$.]
3. Let K be a field and let L be a totally inseparable extension of K such that $[L: K]=q$. Let A be a DVR whose field of fractions is K. Let v the discrete valuation on K^{*} such that A is $\{0\}$ union the set of all $k \in K^{*}$ with $v(k) \geq 0$. Let n be the smallest positive integer such that there is an $\ell \in L^{*}$ with $n=v\left(\ell^{q}\right)>0$. Define $w: L^{*} \longrightarrow \mathbb{Z}$ by

$$
w(\ell)=\frac{v\left(\ell^{q}\right)}{n} .
$$

Show that w is a discrete valuation on L^{*}.
4. Let K be a field and let L be a totally inseparable extension of K such that $[L: K]$ is a finite.
(1) Let A be a DVR whose field of fractions is A and let B be the integral closure of A in L. Show that B is a DVR.
(2) Let A be a Dedekind domain whose field of fractions is A and let B be the integral closure of A in L. Show that B is a Dedekind domain.
[Hint: Use previous problems!]
5. Let A be a DVR with maximal ideal \mathcal{P}, field of fractions K. Let L be a finite separable extension of K and let B be a ring in L that is integral over A and has field of fractions L. Let \mathcal{Q} be a prime in B for which $\mathcal{Q} \cap A=\mathcal{P}, \mathcal{Q}^{e} \supseteq B \mathcal{P}$ and $[B / \mathcal{Q}: A / \mathcal{P}]=f$. Show that $\operatorname{dim}_{A / \mathcal{P}}\left(B / \mathcal{Q}^{e}\right) \geq$ ef with equality if and only if $B_{\mathcal{Q}} \mathcal{Q}$ is principal or $e=1$.
6. Let A be a DVR with maximal ideal \mathcal{P}, field of fractions K. Let L be a finite separable extension of K of degree n and let B be a ring in L that is integral over A and has field of fractions L. Suppose that $B \mathcal{P}$ factors as

$$
B \mathcal{P}=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .
$$

Let f_{i} be the relative degree $\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]$ of \mathcal{Q}_{i} over \mathcal{P}. Show that $\sum_{i=1}^{m} e_{i} f_{i}=n$ if and only if B is Dedekind.
7. Let p be a prime number. Show that $\mathbb{Z}[i] p$ factors as

$$
\begin{array}{rll}
\mathcal{Q}^{2} & ; & \text { if } p=2 \\
\mathcal{Q}_{1} \mathcal{Q}_{2} & ; & \text { if } p \equiv 1 \quad(\bmod 4) \\
\mathcal{Q} & ; & \text { if } p \equiv 3 \\
(\bmod 4),
\end{array}
$$

where $\mathcal{Q}, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_{1} \neq \mathcal{Q}_{2}$.

