Math 568 Problem Set #5 – Due October 20

1. Let R be a domain such that:

- (1) For every nonzero prime \mathfrak{p} of R, the localization $R_{\mathfrak{p}}$ is a DVR; and
- (2) Every nonzero ideal I of R is contained in at most finitely many primes \mathfrak{p} of R.

Show that R must be a Dedekind domain. [Hint: It is sufficient to show it is Noetherian, for example.]

2. Let K be a field and let L be a totally inseparable extension of K such that [L:K] = q. Let A be a Dedekind domain whose field of fractions is A and let B be the integral closure of A in L. Show that for each prime \mathfrak{p} of A there is a unique prime \mathfrak{q} of B such that $\mathfrak{q} \cap A = \mathfrak{p}$. [Consider the map $\varphi: B \longrightarrow A$ given by $\varphi(x) = x^q$ and show that for any prime \mathfrak{p} in A we have $\varphi^{-1}(\mathfrak{p}) \cap A = \mathfrak{p}$ and for any prime \mathfrak{q} in B, we have $\varphi^{-1}(\mathfrak{q} \cap A) = \mathfrak{q}$.]

3. Let K be a field and let L be a totally inseparable extension of K such that [L:K] = q. Let A be a DVR whose field of fractions is K. Let v the discrete valuation on K^* such that A is $\{0\}$ union the set of all $k \in K^*$ with $v(k) \ge 0$. Let n be the smallest positive integer such that there is an $\ell \in L^*$ with $n = v(\ell^q) > 0$. Define $w: L^* \longrightarrow \mathbb{Z}$ by

$$w(\ell) = \frac{v(\ell^q)}{n}.$$

Show that w is a discrete valuation on L^* .

4. Let K be a field and let L be a totally inseparable extension of K such that [L:K] is a finite.

- (1) Let A be a DVR whose field of fractions is A and let B be the integral closure of A in L. Show that B is a DVR.
- (2) Let A be a Dedekind domain whose field of fractions is A and let B be the integral closure of A in L. Show that B is a Dedekind domain.

[Hint: Use previous problems!]

5. Let A be a DVR with maximal ideal \mathcal{P} , field of fractions K. Let L be a finite separable extension of K and let B be a ring in L that is integral over A and has field of fractions L. Let \mathcal{Q} be a prime in B for which $\mathcal{Q} \cap A = \mathcal{P}$, $\mathcal{Q}^e \supseteq B\mathcal{P}$ and $[B/\mathcal{Q} : A/\mathcal{P}] = f$. Show that $\dim_{A/\mathcal{P}}(B/\mathcal{Q}^e) \ge ef$ with equality if and only if $B_{\mathcal{Q}}\mathcal{Q}$ is principal or e = 1.

6. Let A be a DVR with maximal ideal \mathcal{P} , field of fractions K. Let L be a finite separable extension of K of degree n and let B be a ring in L that is integral over A and has field of fractions L. Suppose that $B\mathcal{P}$ factors as

$$B\mathcal{P}=\mathcal{Q}_1^{e_1}\cdots\mathcal{Q}_m^{e_m}$$

Let f_i be the relative degree $[B/Q_i : A/P]$ of Q_i over \mathcal{P} . Show that $\sum_{i=1}^m e_i f_i = n$ if and only if B is Dedekind.

7. Let p be a prime number. Show that $\mathbb{Z}[i]p$ factors as

$$\begin{array}{ll} \mathcal{Q}^2 & ; & \text{if } p \equiv 2 \\ \mathcal{Q}_1 \mathcal{Q}_2 & ; & \text{if } p \equiv 1 \pmod{4} \\ \mathcal{Q} & ; & \text{if } p \equiv 3 \pmod{4} \end{array}$$

where $\mathcal{Q}, \mathcal{Q}_1, \mathcal{Q}_2$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_1 \neq \mathcal{Q}_2$.