Math 568 Problem Set #4 Due 10/13/14

- 1. Let R be a finite ring with $R \neq 0$. Show that R is zero-dimensional.
- 2. Let R be an integral domain, let \mathcal{M} be a maximal ideal of R, and let S be a multiplicative subset of R contained in $R \setminus \mathcal{M}$. Show that

$$R/\mathcal{M}^n \cong S^{-1}R/(S^{-1}R\mathcal{M}^n).$$

- 3. Let $\theta = \sqrt{3}$ and let $R = \mathbb{Z}[\theta]$.
 - (a) Write down a dual basis for the basis 1, θ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x,y) = T_{\mathbb{Q}(\theta)/\mathbb{Q}}(xy)$.
 - (b) Letting R^{\dagger} denote the \mathbb{Z} -module generated by the dual basis above, find the order of the abelian group R^{\dagger}/R .
- 4. Let K be a field. We define the resultant Res(f,g) as follows. Write

$$f(x) = b \prod_{i=1}^{m} (x - \alpha_i)$$
, $g(x) = c \prod_{j=1}^{n} (x - \beta_j)$,

with $b,c\in K^*$ and β_i,γ_j in some algebraic closure of K. Then

$$\operatorname{Res}(f,g) := b^n c^m \prod_{i=1}^m \prod_{j=1}^n (\alpha_i - \beta_j).$$

- (a) Let $h(x) = x^2 3$. Calculate Res(h(x), h'(x)).
- (b) Let $t(x) = x^2 x 1$. Calculate Res(t(x), t'(x)).
- 5. Let f and g be as above and suppose that g is nonconstant. Show that

$$\operatorname{Res}(f(x), g(x)) = b^n \prod_{i=1}^m g(\alpha_i).$$

6. Let f be as above and assume that its leading coefficient b is 1 and that the degree of f is at least 2. Show that

$$\operatorname{Res}(f(x), f'(x)) = \prod_{\substack{1 \le i, j \le m \\ i \ne j}} (\alpha_i - \alpha_j).$$

7.

- (a) Let $K \subseteq L$ be a separable field extension with $L = K(\theta)$ for an algebraic θ with minimal monic polynomial f(x) over K. Show that for $a \in K$, we have $N_{L/K}(a \theta) = f(a)$.
- (b) Let ξ_p be a primitive p-th root of unity for a prime number p. Show that $N_{\mathbb{Q}(\xi_p)/\mathbb{Q}}(1-\xi_p)=p$.