Math 568 Problem Set \#3 Due 10/6/14

1. (p.14, Ex. 2) Let R be a Noetherian integral domain with field of fractions K and let M be an R-submodule of a finite dimensional R-vector space. Prove that

$$
M=\bigcap_{\mathcal{P} \text { maximal }} R_{\mathcal{P}} M
$$

2. Let K be a field and let F be a polynomial of positive degree with coefficients in K, which factors as

$$
F(X)=\prod_{i=1}^{n}\left(f_{i}(X)\right)^{e_{i}}
$$

where e_{i} are positive integers, the f_{i} have positive degree, and $K[X] f_{i}+$ $K[X] f_{j}=1$ for $i \neq j$.
(a) Show that

$$
K[X] /(F(X)) \cong \sum_{i=1}^{n} K[X] /\left(f_{i}(X)^{e_{i}}\right)
$$

(b) Show that $K[X] /(F(X))$ is Noetherian and has dimension 0 .
3. Let $A=\mathbb{Z}\left[\frac{1+\sqrt{-7}}{2}\right]$, considered as a subset of the complex numbers \mathbb{C}. Let $\mathrm{N}: \mathbb{C} \longrightarrow \mathbb{R}$ be the usual norm map given by $\mathrm{N}(a+b i)=a^{2}+b^{2}$. Let $m \in A$ be nonzero. Show that for any $n \in A$, there is a $q \in A$ and such that $\mathrm{N}(n-m q)<\mathrm{N}(m)$. Conclude that A is a principal ideal domain.
4. Let $A=\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right]$, considered as a subset of the complex numbers \mathbb{C}. Let $\mathrm{N}: \mathbb{C} \longrightarrow \mathbb{R}$ be the usual norm map given by $\mathrm{N}(a+b i)=a^{2}+b^{2}$. Let $m \in A$ be nonzero. True or false and explain: for any $n \in A$, there is a $q \in A$ and such that $\mathrm{N}(n-m q)<\mathrm{N}(m)$.
5. Let $A=\mathbb{Z}\left[\frac{1+\sqrt{-15}}{2}\right]$, considered as a subset of the complex numbers \mathbb{C}. Let $\mathrm{N}: \mathbb{C} \longrightarrow \mathbb{R}$ be the usual norm map given by $\mathrm{N}(a+b i)=a^{2}+b^{2}$. Let $m \in A$ be nonzero. True or false and explain: for any $n \in A$, there is a $q \in A$ and such that $\mathrm{N}(n-m q)<\mathrm{N}(m)$.
6. Let I be a nonzero ideal in a Noetherian integral R domain of dimension 1. Show that I factors as a product of primes if and only if $R_{\mathcal{M}} I$ is a power of $R_{\mathcal{M}} \mathcal{M}$ for every maximal ideal \mathcal{M} of R. You may find Lemma 3.18 from the book to be helpful.
7. Let d be a square-free integer congruent to 1 modulo 4 that is not congruent to 1 modulo 8 . Let $R=\mathbb{Z}[\sqrt{d}]$. Let I be the ideal generated by 2 in R, let J be the ideal generated by $1-\sqrt{d}$ in R, and let $\mathcal{P}=I+J$. Show that
(1) R / \mathcal{P} is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ and that \mathcal{P} is therefore actually a prime;
(2) $\mathcal{P}^{2} \subseteq I$;
(3) $\left|R_{\mathcal{P}} /\left(R_{\mathcal{P}} I\right)\right|=\left|R_{\mathcal{P}} /\left(R_{\mathcal{P}} J\right)\right|$ but that $R_{\mathcal{P}} I \neq R_{\mathcal{P}} J$;
(4) $R_{\mathcal{P}} J$ is not a power of $R_{\mathcal{P}} \mathcal{P}$ and J therefore cannot be factored as a product of prime ideals.
8. Let R be an integral integral domain and let M and N be fractional ideals of R. Do the following:
(1) Show that if M is invertible, then $(R: M)(R: N)=(R: M N)$.
(2) Let R and \mathcal{P} be as in problem $\# 7$. Show that $(R: \mathcal{P})(R: \mathcal{P}) \neq$ ($R: \mathcal{P}^{2}$).
9. Let R be a Noetherian domain with the property that every prime ideal is principal. Show that every ideal of R is principal. [Hint: You may want to begin by showing that R is Dedekind]
10. We will say that a ring R is unique factorization domain (UFD) if R is an integral domain and if

- every nonunit $a \in R$ can be written as $\prod_{i=1}^{n} \pi_{i}^{e_{i}}$, where $e_{i} \in \mathbb{Z}^{+}$ and $R \pi_{i}$ is a prime ideal in R; and
- given two factorizations

$$
a=\prod_{i=1}^{n} \pi_{i}^{e_{i}}=\prod_{i=1}^{m} \gamma_{i}^{f_{i}},
$$

where $e_{i}, f_{i} \in \mathbb{Z}^{+}$and $R \pi_{i}, R \gamma_{i}$ are prime ideals in R, we must have $m=n$ and a reordering σ of $1, \ldots, n$ such that $R \pi_{i}=R \gamma_{\sigma(i)}$ and $e_{i}=f_{\sigma(i)}$.
Since a principal ideal domain is a Dedekind domain or a field, it follows from unique factorization for ideals in a Dedekind domain that a principal ideal domain is a UFD. Show the partial converse: any Noetherian UFD of dimension 1 is a principal ideal domain.

