Math 568 Problem Set \#2 Due 9/22/14

1. (a) Let $\phi: A \longrightarrow B$ be a mapping of rings. Show that for any prime ideal \mathcal{P} in B, the ideal $\phi^{-1}(\mathcal{P})$ is a prime ideal in A.
(b) Give an example of a surjective ring homomorphism $\phi: A \longrightarrow B$ for which there is a prime ideal \mathcal{P} of A such that $\phi(\mathcal{P})$ is not a prime ideal.
2. (a) Give an example of a mapping of rings $\phi: A \longrightarrow B$ for which there is an ideal I of A such that $\phi(I)$ is not an ideal.
(b) Let $\phi: A \longrightarrow B$ be a surjective mapping of rings. Show that for any ideal I of A, the set $\phi(I)$ forms an ideal in B.
(c) Let $\phi: A \longrightarrow B$ be any mapping of rings. Show that for any ideal J of B, the set $\phi^{-1}(J)$ forms an ideal in A.
3. Let $A \subset B$ where A and B are domains and let K be the field of fractions of B. Show that if B is integrally closed over A in K, then B is integrally closed over itself in K.
4. (Ex. 4, p.3) Show that if S is a multiplicative set not containing 0 in a Noetherian integral domain R, then $S^{-1} R$ is also a Noetherian integral domain.
5. The definition of a Noetherian R-module for a ring R is very similar to that of a Noetherian ring. We say that M is a Noetherian R-module if it satisfies the ascending module property, which says that given any ascending chain R-submodules of R as below

$$
M_{0} \subseteq M_{1} \subseteq \cdots \subseteq M_{j} \subseteq \ldots
$$

there is some N such that $M_{n}=M_{n+1}$ for all $n \geq N$. As with rings, this is equivalent to saying that all of the R-submodules of M are finitely generated.

Let

$$
0 \longrightarrow M^{\prime} \longrightarrow M \longrightarrow M^{\prime \prime} \longrightarrow 0
$$

be an exact sequence of R-modules. Show that M is a Noetherian R-module if and only if M^{\prime} and $M^{\prime \prime}$ are Noetherian R-modules.
6. Let R be a Noetherian integral domain, let I be an ideal of R, and let $S \subset R$ be a nonempty multiplicative set with $0 \notin S$. Let φ be the usual map from R to $S^{-1} R$. Show that if $S \cap I$ is empty, then $R_{S} \phi(I)$ is not all of R_{S}.
7. Let R be a ring and let $\phi: R \longrightarrow R / I$ be the natural quotient map.
(a) Show that the map

$$
\phi^{-1}: J \longrightarrow \phi^{-1}(J)
$$

from ideals in R / I to ideals in R gives a bijection between the set of ideals in R / I and the set set of ideals in R that contain I.
(b) Show that the map ϕ^{-1} from prime ideals in R / I to prime ideals in R gives a bijection between the set of prime ideals in R / I and the set set of prime ideals in R that contain I.
8. Find a ring R and an ideal I for which there is an element $c \in I^{2}$ that cannot be written as $a b$ where $a, b \in I$.
9. (p. 6, Ex.3) Show that if $\left\{R_{i}\right\}$ is a family of integrally closed subrings of a field K, then the intersection

$$
\bigcap_{i} R_{i}
$$

is also integrally closed.

