## Math 568 Problem Set \#10 "Due" 12/15/14

1. Let $d<-1$ be a squarefree integer that is congruent to $1(\bmod 4)$ and let $p$ be an odd prime less than $|d| / 4$. Show that there is a prime $\mathcal{Q}$ in $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ with $\mathcal{Q} \cap \mathbb{Z}=p$ and $[\mathcal{Q}] \neq 1$ if and only if $d$ is square modulo $p$.
2. Let $d<-\frac{8^{2}}{\pi}$ be a squarefree integer congruent to $5(\bmod 8)$ and let $L=\mathbb{Q}(\sqrt{d})$. Show that $\mathrm{Cl}\left(\mathcal{O}_{L}^{\pi}\right)=1$ if and only if $d$ is not a square modulo $p$ for every odd prime $p<\frac{1}{2} \frac{4}{\pi} \sqrt{\mathcal{O}_{L} / \mathbb{Z}}$.
3. Let $d$ be any squarefree integer that is congruent to $3(\bmod 4)$. Show that $\mathbb{Q}(\sqrt{d})$ admits a nontrivial extension that is unramified at all primes in $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$.
4. Let $d$ be any composite squarefree integer. Show that $\mathbb{Q}(\sqrt{d})$ admits a nontrivial extension that is unramified at all primes in $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$. [Hint: Let $p$ be an odd prime factor of $d$. Try adjoining $\sqrt{ \pm p}$ to $\mathbb{Q}(\sqrt{d})]$.
5. Compute the class group of $\mathbb{Z}\left[\frac{1+\sqrt{-31}}{2}\right]$.
6. p. 81, Ex. 3
7. p. 81, Ex. 4: The entry under $\mathbb{Z}[\sqrt{10}]$ is wrong, it should be $3+\sqrt{10}$.
8. p. 81, Ex. 5
