
Math 568 Tom Tucker
NOTES FROM CLASS 9/24

A note on definitions: Fractional ideals are not generally always
assume to be finitely generated. So here’s what we have from last time
with this convention.

Lemma 7.1. Let J be a finitely generated fractional ideal of an integral
domain R with field of fractions K and let S be a multiplicative set S
in R not containing 0. Then S−1R(R : J) = (S−1R : S−1RJ).

Proof. Since xJ ⊆ R implies that x
s
J ⊆ S−1R for any s ∈ S it is

clear that S−1R(R : J) ⊆ (S−1R : S−1RJ). To get the reverse in-
clusion, let y ∈ (S−1R : S−1RJ) and let m1, . . . ,mn generate J as an
R-module. Since yS−1RJ ⊆ S−1R, we must have ymi ⊂ S−1R, so we
can write ymi = ri/si where ri ∈ R and si ∈ S. Since (s1 · · · sny)mi =
(
∏

j 6=i sj)ri ∈ R, this means that s1 · · · sny ∈ (R : J). Thus, y ∈
S−1R(R : J). �

All invertible ideals are automatically finitely generated, though.

Lemma 7.2. Let J be a fractional ideal of an integral domain R. Then
J is invertible ⇔ J is finitely generated and RMJ is an invertible
fractional ideal of RM for every maximal ideal M of R.

Proof. (⇒) Let J be an invertible ideal ideal of R. Then we can write

k∑
i=1

nimi = 1

with ni ∈ (R : J). Since niJ ∈ R for each i, we can write any y ∈ J as∑k
i=1(niy)mi = y, so the mi generate J . Hence, J is finitely generated.

Let M be a maximal ideal of R. Since we can write J(R : J) = R
we must have RM(J(R : J)) = RM, so (RMJ)(RM(R : J)) = RM, so
RMJ is invertible

(⇐) For any ideal J , we can form J(R : J) ⊆ R (not necessarily equal
to R). This will be an ideal I of R. Let M be a maximal ideal of R.
Since J is finitely generated by assumption, we can apply the Lemma
immediately above to obtain (RM : RMJ) = RM(R : J). Hence, we
have RMJ(R : J) = RM. Thus the ideal I = J(R : J) is not contained
in any maximal ideal of R. Thus, I = R and J is invertible. �

Theorem 7.3. Let R be a a local integral domain of dimension 1.
Then R is a DVR ⇔ every nonzero fractional ideal of R is invertible.
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Proof. (⇒) If J is a fractional ideal, then xJ ⊂ R for some x ∈ R.
Hence xJ = Ra for some a ∈ R since a DVR is PID. Thus, J = Rax−1.
Clearly (R : J) = Ra−1x and J(R : J) = 1, so J is invertible.

(⇐) Since every nonzero ideal I ⊂ R is invertible, every ideal of R is
finitely generated, so R is Noetherian. Now, it will suffice to show that
every nonzero ideal in R is a power of the maximal ideal M of R. The
set of ideals I of R that are not a power of M (note: we consider R to
M0, so the unit ideal is considered to be a power ofM) has a maximal
element if it is not empty. Taking such a maximal element I, we see
that (R :M)I must not be invertible since if it had an inverse J , then
MJ would be an inverse for I. On the other hand, (R :M)I 6= I since
if (R :M)I = I, thenMI = I which means that I = 0 by Nakayama’s
Lemma. Since (R : M)I ⊇ I (since 1 ∈ (R : M)), this means that
(R : M)I is strictly larger than I, contradicting the maximality of
I. �

Now, we have the global counterpart.

Theorem 7.4. Let R be a integral domain of dimension 1. Then R is
a Dedekind domain ⇔ every fractional ideal of R is invertible.

Proof. (⇒) Let J be a fractional ideal of R. Then, for every maximal
ideal M, it is clear that RMJ is a fractional ideal of RM. Since RM is
a DVR, RMJ must be therefore be invertible for every maximal ideal
M. Moreover, J must be finitely generated since there is an x ∈ K
for which xJ is an ideal of R and every ideal of R is finitely generated
since R is Noetherian. Therefore, J must be invertible by a Lemma
7.2.

(⇐) Since every ideal of R is invertible, every ideal of R is finitely
generated, so R is Noetherian. Let M be a maximal ideal of R and let
I be a nonzero ideal in RM. Then I ∩R is invertible, so I is invertible.
Thus, RM is a DVR as desired.

�

Let’s show that not only can every ideal I of a Dedekind domain R
be factored uniquely, but so can every fractional ideal J of a Dedekind
domain. Since every nonzero prime is invertible in R, we can write
P−1 = (R : P) for maximal P (by the way nonzero prime means the
same thing as maximal in a 1-dimensional integral domain of course).

Proposition 7.5. Let R be a Dedekind domain. Then every fractional
ideal J of R has a unique factorization as

J =
n∏

i=1

Pei
i
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with all the ei 6= 0.

Proof. To see that J has some factorization as above we note xJ is an
ideal I in R. So if we factor Rx and I and write J = (x)−1I, we have
a factorization. To see that the factorization is unique we write

I = (
n∏

i=1

Pei
i )(

m∏
j=1

Q−fj

j )

with all the ei and fj positive and no Qj equal to any Pi. Let I =∏m
j=1Q

fj

j Then JI2 is an ideal of R with JI2 = (
∏n

i=1P
ei
i )(

∏m
j=1Q

fj

j ).

Since I2 has a unique factorization and so does JI2, so must J have a
unique factorization. �

What’s the problem in general then for showing that OL is Dedekind
for L a number field? The big problem is showing that it isOL is finitely
generated as a Z-module. It is integrally closed and we alter one of the
Lemmas above to show that it is one-dimensional. Here is the proof of
that.

Lemma 7.6. Let A be an integral domain that is not a field. Suppose
that B is integral over A. Then B is not a field.

Proof. Since A is not a field, there is some x ∈ A such that x−1 /∈ A.
We will show that x−1 is not integral over A and therefore cannot be
in B. Suppose that x−1 was integral over A. Then we would have

x−n + an−1x
−n+1 + · · ·+ a0 = 0

with ai ∈ A. But then we would have

x−1 = −(an−1 + . . . a0x
n−1) ∈ A,

a contradiction. �

Proposition 7.7. Let A and B be integral domains with A ⊂ B and
B integral over A. Suppose that A is 1-dimensional. Then B is 1-
dimensional.

Proof. First, note that B cannot be 0-dimensional since it cannot be a
field by the lemma above. We have seen before dim B ≤ 1 so our proof
is done. �

So all we need to do is show that OL is Noetherian for a number field
L (a number field is a finite extension of Q). We’ll show something a
little more general. We’ll show the following.

Theorem 7.8. Let A be a Dedekind domain with field of fractions K.
Let L be a finite separable extension of A. Then the integral closure B
of A in L is a Dedekind domain.
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From some work we’ve done, all we’ll have to do is show that B is
contained in a finitely generated A-module. We’ll use something called
a dual basis, the existence of which is proven using the separable basis
theorem.

The separable basis theorem. Here is the basic set-up for today. Let
L be a finite algebraic extension of degree n over K. Since L is a vector
space over K and multiplication by an element x in L preserves the
K-structure of L, we see that

rx : z 7→ xz

is a K-linear invertible map from L to L. Given a basis m1, . . . ,mn for
L over K, we can write

rxmi =
n∑

i=1

aijmj

for m1, . . . ,mn. We have the usual definitions for the norm and trace
of rx below

TL/K(x) := TL/K(rx) =
n∑

i=1

aii

NL/K(x) := NL/K(rx) = det([aij]).

In other words, if rx gives the matrix M , then the trace is the sum
of the diagonal elements and the norm is the product of the diagonal
elements. It turns out that this definition doesn’t depend on the choice
of basis. This is a standard fact from linear algebra. It follows from
the fact that for any matrix n× n M and any invertible n× n matrix
U , we have

TL/K(M) = TL/K(UMU−1)

and
NL/K(M) = NL/K(UMU−1).


