
Math 568 Tom Tucker

Proposition 5.1. Let R be a domain and let S ⊂ R be a multiplicative
subset not containing 0. Let b ∈ K, where K is the field of fractions
of R. Then b is integral over S−1R ⇔ sb is integral over R for some
s ∈ S.

Proof. If b is integral over S−1R, then we can write

bn +
an−1

sn−1

bn−1 + · · ·+ b0

s0

= 0.

Letting s =
∏n−1

i=0 si and multiplying through by sn we obtain

(sb)n + a′n−1(sb)
n−1 + · · ·+ a′0 = 0

where

a′i = sn−i−1

n∏
j=1
j 6=i

siai

which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b ∈ S−1R and s ∈ S satisfies an equation

(sb)n + an−1(sb)
n−1 + · · ·+ a0 = 0,

with ai ∈ R, then dividing through by sn gives an equation

bn +
an−1

s
bn−1 + · · ·+ a0

sn
,

with coefficients in S−1R.
�

Corollary 5.2. If R is integrally closed, then S−1R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element c ∈ K that is integral over S−1R has the property
that sc is integral over R for some s ∈ S, this means that sc ∈ R for
some s ∈ S and hence that c ∈ S−1R.

�

Lemma 5.3. Let A ⊆ B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have
I ∩ A 6= 0.

Proof. Let b ∈ A be nonzero. Since b is algebraic over A and b 6= 0, we
can write

anb
n + · · ·+ a0 = 0,

for ai ∈ A and a0 6= 0. Then a0 ∈ I ∩ Z. �
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Theorem 5.4. Let α be an algebraic number that is integral over Z.
Suppose that Z[α] is integrally closed. Then Z[α] is a Dedekind domain.

Proof. Since Z[α] is a finitely generated Z-module, any ideal of Z[α[ is
also a finitely generated Z-module. Hence, any ideal of Z[α] is finitely
generated over Z[α], so Z[α] is Noetherian. Let Q be a prime in Z[α].
Then, Q ∩ Z is a prime ideal (p) in Z. Hence, Z[α]/Q is a quotient
of Fp[X]/f(X) where f(X) is the minimal monic satisfied by α. Since
Fp[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[α]/Q is a field so Q must be maximal. �

Remark 5.5. The rings we deal with will not in general have this form.

Now, a brief interlude on geometry and normality. Let F (X, Y ) = 0
be a curve in the plane k2 over an algebraically closed field k. We say
that F (X, Y ) is singular at the point (a, b) is

∂F

∂X
(a, b) =

∂F

∂Y
(a, b) = 0.

In other words if the tangent vector to F = 0 is 0 at (a, b), so that
there is no notion of a tangent vector here. If the point (a, b) is not
singular, we say that it is nonsingular.

Note that the primes Q of R correspond to points (a, b) such that
F (a, b) = 0. If Q corresponds to the point (a, b) then Q is simply the
image of k[X, Y ](X − a) + k[X, Y ](Y − b) in R.

Lemma 5.6. Let Q be a nonzero prime in the ring

R = k[X, Y ]/F (X, Y ).

Then
dimkQ/Q2 = 1

if and only if the point (a, b) corresponding to Q is nonsingular.

Proof. Let P be prime in k[X, Y ] generated by (X − a) and (Y − b).
Let θ be the map from k[X, Y ] to k2 given by

θ(G) = (
∂G

∂X
(a, b),

∂G

∂Y
(a, b)).

Then θ(X − a) = (1, 0) and θ(Y − b) = (0, 1), so the rank of the image
of P is 2. It is easy to see that P2 is in the kernel of this map. So θ
induces an isomorphism between P/P2 and k2. Now we have

Q/Q2 ∼= (P/(P2 + F (X, Y )),

as a k-vector space since

P2 + F (X, Y ) = φ−1(Q2)
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where φ is the quotient map from k[X, Y ] to R. Counting dimensions
we have

dimk P/P2 = 2

if θ(F ) = 0 and and

dimk P/P2 = 1

otherwise. �

Lemma 5.7. (Later in class we wil prove this more generally) We have

Q/Q2 ∼= RQQ/(RQQ)2.

Lemma 5.8. Let R be a ring that has direct sum decomposition

R =
n⊕

j=1

Rj.

Then every ideal in I ⊂ R can be written as

I =
n⊕

j=1

Ij

for ideals Ij ⊂ Rj. If P is a prime of R then there is some j for which
we can write

P =
⊕
` 6=j

R`

⊕
Pj

Proof. We can view R =
⊕n

j=1 Rj as the set of

(r1, . . . , rn)

with rj ∈ Rj. Let pj be the usual projection from R onto its j-th
coordinate and let ij be the usual embedding of Rj into R obtained by
sending rj ∈ Rj to the element of R with all coordinates 0 except for
the j-th coordinate which is set to rj. Since an ideal I of R must be a
ij(Rj) module, the set of pj(r) for which r ∈ I must form an ideal Rj

ideal, call it Ij. It is easy to see that Ij = pj(I). Certainly, I ⊂
⊕

pj(I).
Since we can multiply anything in I by (0, . . . , 1j, 0, . . . , 0) we see that
ijpj(I) ⊂ I. Hence

⊕
pj(I) ⊂ I, and we are done with our description

of ideals of
⊕n

j=1 Rj. For prime ideals, we note that if P is a prime

then (a1, . . . , an)(b1, . . . , bn) ∈ P implies that ajbj ∈ pj(P) for each j,
so pj(P) must be a prime of Rj or all of Rj. Suppose we had k 6= j with
pj(P) 6= Rj and pk(P) 6= Rk. Then choosing aj ∈ pj(P), ak ∈ pk(P)
and bj /∈ pj(P), bk /∈ pk(P), we see that

(ij(aj) + ij(bk))(ij(bj) + ik(ak)) ∈ P ,
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but (ij(aj)+ij(bk)), (ij(bj)+ik(ak)) /∈ P , a contradiction, so pj(P) = Rj

for all but one j. Thus

P =
⊕
` 6=j

R`

⊕
Pj

for some prime Pj of Rj. �


