Math 568 Tom Tucker

Proposition 5.1. Let R be a domain and let $S \subset R$ be a multiplicative subset not containing 0 . Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1} R \Leftrightarrow s b$ is integral over R for some $s \in S$.

Proof. If b is integral over $S^{-1} R$, then we can write

$$
b^{n}+\frac{a_{n-1}}{s_{n-1}} b^{n-1}+\cdots+\frac{b_{0}}{s_{0}}=0 .
$$

Letting $s=\prod_{i=0}^{n-1} s_{i}$ and multiplying through by s^{n} we obtain

$$
(s b)^{n}+a_{n-1}^{\prime}(s b)^{n-1}+\cdots+a_{0}^{\prime}=0
$$

where

$$
a_{i}^{\prime}=s^{n-i-1} \prod_{\substack{j=1 \\ j \neq i}}^{n} s_{i} a_{i}
$$

which is clearly in R. Hence $s b$ is integral over R. Similarly, if an element $s b$ with $b \in S^{-1} R$ and $s \in S$ satisfies an equation

$$
(s b)^{n}+a_{n-1}(s b)^{n-1}+\cdots+a_{0}=0
$$

with $a_{i} \in R$, then dividing through by s^{n} gives an equation

$$
b^{n}+\frac{a_{n-1}}{s} b^{n-1}+\cdots+\frac{a_{0}}{s^{n}},
$$

with coefficients in $S^{-1} R$.

Corollary 5.2. If R is integrally closed, then $S^{-1} R$ is integrally closed. Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1} R$ has the property that $s c$ is integral over R for some $s \in S$, this means that $s c \in R$ for some $s \in S$ and hence that $c \in S^{-1} R$.

Lemma 5.3. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.

Proof. Let $b \in A$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$
a_{n} b^{n}+\cdots+a_{0}=0
$$

for $a_{i} \in A$ and $a_{0} \neq 0$. Then $a_{0} \in I \cap \mathbb{Z}$.

Theorem 5.4. Let α be an algebraic number that is integral over \mathbb{Z}. Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.

Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z}-module, any ideal of $\mathbb{Z}[\alpha[$ is also a finitely generated \mathbb{Z}-module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathcal{Q} be a prime in $Z[\alpha]$. Then, $\mathcal{Q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z}. Hence, $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a quotient of $\mathbf{F}_{p}[X] / f(X)$ where $f(X)$ is the minimal monic satisfied by α. Since $\mathbf{F}_{p}[X] / f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha] / \mathcal{Q}$ is a field so \mathcal{Q} must be maximal.

Remark 5.5. The rings we deal with will not in general have this form.
Now, a brief interlude on geometry and normality. Let $F(X, Y)=0$ be a curve in the plane k^{2} over an algebraically closed field k. We say that $F(X, Y)$ is singular at the point (a, b) is

$$
\frac{\partial F}{\partial X}(a, b)=\frac{\partial F}{\partial Y}(a, b)=0 .
$$

In other words if the tangent vector to $F=0$ is 0 at (a, b), so that there is no notion of a tangent vector here. If the point (a, b) is not singular, we say that it is nonsingular.

Note that the primes \mathcal{Q} of R correspond to points (a, b) such that $F(a, b)=0$. If \mathcal{Q} corresponds to the point (a, b) then \mathcal{Q} is simply the image of $k[X, Y](X-a)+k[X, Y](Y-b)$ in R.

Lemma 5.6. Let \mathcal{Q} be a nonzero prime in the ring

$$
R=k[X, Y] / F(X, Y)
$$

Then

$$
\operatorname{dim}_{k} \mathcal{Q} / \mathcal{Q}^{2}=1
$$

if and only if the point (a, b) corresponding to \mathcal{Q} is nonsingular.
Proof. Let \mathcal{P} be prime in $k[X, Y]$ generated by $(X-a)$ and $(Y-b)$. Let θ be the map from $k[X, Y]$ to k^{2} given by

$$
\theta(G)=\left(\frac{\partial G}{\partial X}(a, b), \frac{\partial G}{\partial Y}(a, b)\right)
$$

Then $\theta(X-a)=(1,0)$ and $\theta(Y-b)=(0,1)$, so the rank of the image of \mathcal{P} is 2 . It is easy to see that \mathcal{P}^{2} is in the kernel of this map. So θ induces an isomorphism between $\mathcal{P} / \mathcal{P}^{2}$ and k^{2}. Now we have

$$
\mathcal{Q} / \mathcal{Q}^{2} \cong\left(\mathcal{P} /\left(\mathcal{P}^{2}+F(X, Y)\right),\right.
$$

as a k-vector space since

$$
\mathcal{P}^{2}+F(X, Y)=\phi^{-1}\left(\mathcal{Q}^{2}\right)
$$

where ϕ is the quotient map from $k[X, Y]$ to R. Counting dimensions we have

$$
\operatorname{dim}_{k} \mathcal{P} / \mathcal{P}^{2}=2
$$

if $\theta(F)=0$ and and

$$
\operatorname{dim}_{k} \mathcal{P} / \mathcal{P}^{2}=1
$$

otherwise.
Lemma 5.7. (Later in class we wil prove this more generally) We have

$$
\mathcal{Q} / \mathcal{Q}^{2} \cong R_{\mathcal{Q}} \mathcal{Q} /\left(R_{\mathcal{Q}} \mathcal{Q}\right)^{2}
$$

Lemma 5.8. Let R be a ring that has direct sum decomposition

$$
R=\bigoplus_{j=1}^{n} R_{j}
$$

Then every ideal in $I \subset R$ can be written as

$$
I=\bigoplus_{j=1}^{n} I_{j}
$$

for ideals $I_{j} \subset R_{j}$. If \mathcal{P} is a prime of R then there is some j for which we can write

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

Proof. We can view $R=\bigoplus_{j=1}^{n} R_{j}$ as the set of

$$
\left(r_{1}, \ldots, r_{n}\right)
$$

with $r_{j} \in R_{j}$. Let p_{j} be the usual projection from R onto its j-th coordinate and let i_{j} be the usual embedding of R_{j} into R obtained by sending $r_{j} \in R_{j}$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_{j}. Since an ideal I of R must be a $i_{j}\left(R_{j}\right)$ module, the set of $p_{j}(r)$ for which $r \in I$ must form an ideal R_{j} ideal, call it I_{j}. It is easy to see that $I_{j}=p_{j}(I)$. Certainly, $I \subset \bigoplus p_{j}(I)$. Since we can multiply anything in I by $\left(0, \ldots, 1_{j}, 0, \ldots, 0\right)$ we see that $i_{j} p_{j}(I) \subset I$. Hence $\bigoplus p_{j}(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^{n} R_{j}$. For prime ideals, we note that if \mathcal{P} is a prime then $\left(a_{1}, \ldots, a_{n}\right)\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{P}$ implies that $a_{j} b_{j} \in p_{j}(\mathcal{P})$ for each j, so $p_{j}(\mathcal{P})$ must be a prime of R_{j} or all of R_{j}. Suppose we had $k \neq j$ with $p_{j}(\mathcal{P}) \neq R_{j}$ and $p_{k}(\mathcal{P}) \neq R_{k}$. Then choosing $a_{j} \in p_{j}(\mathcal{P}), a_{k} \in p_{k}(\mathcal{P})$ and $b_{j} \notin p_{j}(\mathcal{P}), b_{k} \notin p_{k}(\mathcal{P})$, we see that

$$
\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right)\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \in \mathcal{P}
$$

but $\left(i_{j}\left(a_{j}\right)+i_{j}\left(b_{k}\right)\right),\left(i_{j}\left(b_{j}\right)+i_{k}\left(a_{k}\right)\right) \notin \mathcal{P}$, a contradiction, so $p_{j}(\mathcal{P})=R_{j}$ for all but one j. Thus

$$
\mathcal{P}=\bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_{j}
$$

for some prime \mathcal{P}_{j} of R_{j}.

