Math 568 Tom Tucker

Proposition 5.1. Let R be a domain and let $S \subset R$ be a multiplicative subset not containing 0. Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1}R \Leftrightarrow sb$ is integral over R for some $s \in S$.

Proof. If b is integral over $S^{-1}R$, then we can write

$$b^{n} + \frac{a_{n-1}}{s_{n-1}}b^{n-1} + \dots + \frac{b_{0}}{s_{0}} = 0.$$

Letting $s = \prod_{i=0}^{n-1} s_i$ and multiplying through by s^n we obtain

$$(sb)^n + a'_{n-1}(sb)^{n-1} + \dots + a'_0 = 0$$

where

$$a'_i = s^{n-i-1} \prod_{\substack{j=1\\j \neq i}}^n s_i a_i$$

which is clearly in R. Hence sb is integral over R. Similarly, if an element sb with $b \in S^{-1}R$ and $s \in S$ satisfies an equation

$$(sb)^n + a_{n-1}(sb)^{n-1} + \dots + a_0 = 0,$$

with $a_i \in R$, then dividing through by s^n gives an equation

$$b^n + \frac{a_{n-1}}{s}b^{n-1} + \dots + \frac{a_0}{s^n},$$

with coefficients in $S^{-1}R$.

Corollary 5.2. If R is integrally closed, then $S^{-1}R$ is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1}R$ has the property that sc is integral over R for some $s \in S$, this means that $sc \in R$ for some $s \in S$ and hence that $c \in S^{-1}R$.

Lemma 5.3. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.

Proof. Let $b \in A$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$a_n b^n + \dots + a_0 = 0$$

for $a_i \in A$ and $a_0 \neq 0$. Then $a_0 \in I \cap \mathbb{Z}$.

Theorem 5.4. Let α be an algebraic number that is integral over \mathbb{Z} . Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.

Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module, any ideal of $\mathbb{Z}[\alpha]$ is also a finitely generated \mathbb{Z} -module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathcal{Q} be a prime in $\mathbb{Z}[\alpha]$. Then, $\mathcal{Q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z} . Hence, $\mathbb{Z}[\alpha]/\mathcal{Q}$ is a quotient of $\mathbf{F}_p[X]/f(X)$ where f(X) is the minimal monic satisfied by α . Since $\mathbf{F}_p[X]/f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha]/\mathcal{Q}$ is a field so \mathcal{Q} must be maximal. \Box

Remark 5.5. The rings we deal with will *not* in general have this form.

Now, a brief interlude on geometry and normality. Let F(X, Y) = 0be a curve in the plane k^2 over an algebraically closed field k. We say that F(X, Y) is *singular* at the point (a, b) is

$$\frac{\partial F}{\partial X}(a,b) = \frac{\partial F}{\partial Y}(a,b) = 0.$$

In other words if the tangent vector to F = 0 is 0 at (a, b), so that there is no notion of a tangent vector here. If the point (a, b) is not singular, we say that it is nonsingular.

Note that the primes \mathcal{Q} of R correspond to points (a, b) such that F(a, b) = 0. If \mathcal{Q} corresponds to the point (a, b) then \mathcal{Q} is simply the image of k[X, Y](X - a) + k[X, Y](Y - b) in R.

Lemma 5.6. Let Q be a nonzero prime in the ring

R = k[X, Y] / F(X, Y).

Then

$$\dim_k \mathcal{Q}/\mathcal{Q}^2 = 1$$

if and only if the point (a, b) corresponding to Q is nonsingular.

Proof. Let \mathcal{P} be prime in k[X, Y] generated by (X - a) and (Y - b). Let θ be the map from k[X, Y] to k^2 given by

$$\theta(G) = \left(\frac{\partial G}{\partial X}(a,b), \frac{\partial G}{\partial Y}(a,b)\right).$$

Then $\theta(X - a) = (1, 0)$ and $\theta(Y - b) = (0, 1)$, so the rank of the image of \mathcal{P} is 2. It is easy to see that \mathcal{P}^2 is in the kernel of this map. So θ induces an isomorphism between $\mathcal{P}/\mathcal{P}^2$ and k^2 . Now we have

$$\mathcal{Q}/\mathcal{Q}^2 \cong (\mathcal{P}/(\mathcal{P}^2 + F(X, Y))),$$

as a k-vector space since

$$\mathcal{P}^2 + F(X, Y) = \phi^{-1}(\mathcal{Q}^2)$$

 \square

where ϕ is the quotient map from k[X, Y] to R. Counting dimensions we have

$$\dim_k \mathcal{P}/\mathcal{P}^2 = 2$$

if $\theta(F) = 0$ and and

$$\dim_k \mathcal{P}/\mathcal{P}^2 = 1$$

otherwise.

Lemma 5.7. (Later in class we wil prove this more generally) We have

$$\mathcal{Q}/\mathcal{Q}^2 \cong R_{\mathcal{Q}}\mathcal{Q}/(R_{\mathcal{Q}}\mathcal{Q})^2.$$

Lemma 5.8. Let R be a ring that has direct sum decomposition

$$R = \bigoplus_{j=1}^{n} R_j.$$

Then every ideal in $I \subset R$ can be written as

$$I = \bigoplus_{j=1}^{n} I_j$$

for ideals $I_j \subset R_j$. If \mathcal{P} is a prime of R then there is some j for which we can write

$$\mathcal{P} = \bigoplus_{\ell \neq j} R_{\ell} \bigoplus \mathcal{P}_j$$

Proof. We can view $R = \bigoplus_{j=1}^{n} R_j$ as the set of

$$(r_1,\ldots,r_n)$$

with $r_j \in R_j$. Let p_j be the usual projection from R onto its j-th coordinate and let i_j be the usual embedding of R_j into R obtained by sending $r_j \in R_j$ to the element of R with all coordinates 0 except for the j-th coordinate which is set to r_j . Since an ideal I of R must be a $i_j(R_j)$ module, the set of $p_j(r)$ for which $r \in I$ must form an ideal R_j ideal, call it I_j . It is easy to see that $I_j = p_j(I)$. Certainly, $I \subset \bigoplus p_j(I)$. Since we can multiply anything in I by $(0, \ldots, 1_j, 0, \ldots, 0)$ we see that $i_j p_j(I) \subset I$. Hence $\bigoplus p_j(I) \subset I$, and we are done with our description of ideals of $\bigoplus_{j=1}^n R_j$. For prime ideals, we note that if \mathcal{P} is a prime then $(a_1, \ldots, a_n)(b_1, \ldots, b_n) \in \mathcal{P}$ implies that $a_j b_j \in p_j(\mathcal{P})$ for each j, so $p_j(\mathcal{P})$ must be a prime of R_j or all of R_j . Suppose we had $k \neq j$ with $p_j(\mathcal{P}) \neq R_j$ and $p_k(\mathcal{P}) \neq R_k$. Then choosing $a_j \in p_j(\mathcal{P})$, $a_k \in p_k(\mathcal{P})$ and $b_j \notin p_j(\mathcal{P})$, $b_k \notin p_k(\mathcal{P})$, we see that

$$(i_j(a_j) + i_j(b_k))(i_j(b_j) + i_k(a_k)) \in \mathcal{P},$$

but $(i_j(a_j)+i_j(b_k)), (i_j(b_j)+i_k(a_k)) \notin \mathcal{P}$, a contradiction, so $p_j(\mathcal{P}) = R_j$ for all but one j. Thus

$$\mathcal{P} = \bigoplus_{\ell \neq j} R_\ell \bigoplus \mathcal{P}_j$$

for some prime \mathcal{P}_j of R_j .