Definition 4.1. A discrete valuation on a field K is a surjective homomorphism from K^* onto the additive group of \mathbb{Z} such that

- (1) v(xy) = v(x) + (y);
- $(2) \ v(x+y) \ge \min(v(x), v(y)).$

By convention, we say that $v(0) = \infty$.

Remark 4.2. Note that it follows from property 2 that if v(x) > v(y), then v(x+y) = v(y). To prove this we note that v(-x) = v(x) and v(y) = v(-y), so we have

$$v(y) \ge \min(v(x+y), v(-x)) \ge v(x+y)$$

since v(x) > v(y). Since $v(x+y) \ge \min(v(x), v(y))$ also, we must have v(x+y) = v(y).

Example 4.3. Let v_p be the p-adic valuation on \mathbb{Q} . That is to say that $v_p(a)$ is the largest power dividing a for $a \in \mathbb{Z}$ and $v_p(a/b) = v_p(a) - v_p(b)$ for $a, b \in \mathbb{Z}$.

Definition 4.4. A discrete valuation R ring is a set of the form

$$\{a \in K \mid v(a) \ge 0\}$$

Note that since we have assumed that v is surjective a field is not a DVR. This is different from the terminology used in the book. The key fact about DVR's is that if we pick a π for which $v(\pi) = 1$, then every element in a in R can be written as $u\pi^n$ for some $n \geq 0$. Indeed, this follows form the fact that $a/\pi^{v(a)}$ must have valuation 1 and therefore be a unit. Thus, Ra is the only maximal ideal in R.

How can we identify a DVR? The following will help.

A couple remarks first:

- (1) If I and J are principal then so is IJ. In particular, any power of a principal ideal is principal.
- (2) Notation: for any ideal I of R, we say $I^0 = R$.

Proposition 4.5. Let R be a Noetherian local domain of dimension 1 with maximal ideal \mathcal{M} and with $R/\mathcal{M} = k$ its residue field. Then the following are equivalent

- (1) R is a DVR;
- (2) R is integrally closed;
- (3) \mathcal{M} is principal;
- (4) there is some $\pi \in R$ such that every element $a \in R$ can be written uniquely as $u\pi^n$ for some unit u and some integer $n \geq 0$.

(5) every nonzero ideal is a power of \mathcal{M} ;

Proof. $(1 \Rightarrow 2)$ Suppose that $b \in K \setminus R$. Then v(b) < 0, so for any monic polynomial in b with coefficients in R, we have

$$v(b^n + a_n b^{n-1} + \dots + a_0) = v(b^n) < 0,$$

which means that $b^n + a_n b^{n-1} + \cdots + a_0 \neq 0$.

 $(2\Rightarrow 3)$ Let $a\in\mathcal{M}$. There is some n for which $\mathcal{M}^n\subset(a)$ (by "Poor Man's Factorization" in Noetherian rings) but \mathcal{M}^{n-1} is not contained in (a) (note n-1 could be zero). Let $b\in\mathcal{M}^{n-1}\setminus(a)$ and let x=a/b. We can show that $\mathcal{M}=Rx$. This is equivalent to showing that $x^{-1}\mathcal{M}=R$. Note that since (b) is not in (a), $b/a=x^{-1}$ cannot be in R. Hence, it cannot be integral over R. By Cayley-Hamilton, $x^{-1}\mathcal{M}\neq\mathcal{M}$ since \mathcal{M} is finitely generated as an R-module and $x^{-1}\notin R$ and R is integrally closed. Since $x^{-1}\mathcal{M}$ is an R-module and $x^{-1}\mathcal{M}\subset R$ (this follows from the fact that $b\mathcal{M}\subset\mathcal{M}^n\subset(a)$), this means that $x^{-1}\mathcal{M}$ is an ideal of R not contained in \mathcal{M} . So $x^{-1}\mathcal{M}=R$, as desired.

 $(3\Rightarrow 4)$ Let π generate \mathcal{M} . Now, let $a\in R$. We define w(a) to be the smallest n for which $\mathcal{M}^n\subset Ra$; such an n exists by "Poor Man's Factorization" in Noetherian rings. We will show by induction that that a can be written as $u\pi^{w(a)}$ for some unit u. The case w(a)=0 is trivial, since w(a)=0 means a is a unit. If $w(a)\geq 1$, then $a\in \mathcal{M}$. Then we can write $a=\pi b$ for some b. Since, any element in \mathcal{M}^n , which is simply the set of $z\pi^n$ for $z\in R$, can be written as xa for some $x\in R$, any element $z\pi^{w(a)-1}$ in $\mathcal{M}^{w(a)-1}$ can be written as xb for that same x. Hence $w(b)\leq w(a)-1$. By the same reasoning, $w(b)\geq w(a)-1$. Hence w(b)=w(a)-1. So we can write b uniquely as $u\pi^{w(b)}$ for some unit u, which gives $a=u\pi^{w(a)}$ uniquely.

 $(4 \Rightarrow 5)$ Let I be an ideal of R. Since I is finitely generated, it has generators m_1, \ldots, m_n which can all be written as $u_i \pi^{t_i}$. Then the i for which t_i is smallest will generate I from above.

 $(5 \Rightarrow 1)$ Let $a \in R$. Then $Ra = \mathcal{M}^n$ for some unique n. Letting v(a) = n gives the desired valuation.

Example 4.6. The ideal \mathcal{P} generated by 2 and $\sqrt{5} - 5$ in $\mathbb{Z}[\sqrt{5}]$ is prime but $\mathbb{Z}[\sqrt{5}]_{\mathcal{P}}$ is not a DVR. More on this later.

Definition 4.7. A Dedekind domain is a Noetherian domain R such that $R_{\mathcal{P}}$ is a DVR for every nonzero prime \mathcal{P} of R.

Recall that in any noetherian ring R for every ideal I we can write $\prod_{i=1}^{n} \mathcal{P}_i \subset I$ with $\mathcal{P}_i \supset I$. We'll prove that in a Dedekind domain we can write get an inequality and get it uniquely.

One more thing: we'll want to work in Noetherian domains of (Krull) dimension 1 more generally, as you'll see later. So we'll try to state results for them when possible.

To understand how to factorize an ideal I, we'll want to understand R/I. To help us with this we'll want the Chinese remainer theorem.

The Chinese remainder theorem really consists of writing 1 in a lot of different ways. Let's prove the following easy Lemma.

Lemma 4.8. Let I and J be ideals in R. Suppose that I + J = 1. Then

- (1) $I \cap J = IJ$; and
- (2) for any positive integers m, n, we have $I^m + J^n = 1$.

Proof. Since I+J=1, we can write a+b=1 for $a \in I$ and $b \in J$. Now 1. follows from the fact that for if $x \in I \cap J$, then $x=(a+b)x=ax+bx \in IJ$, so $I \cap J \subset IJ$. The reverse inclusion $IJ \cup I \cap J$ is obvious. To prove 2., we simply write $(a+b)^{2(m+n)}=1$, and note that the expansion of $(a+b)^{2(m+n)}$ consists entirely of elements in either $I^{m+n} \subset I^m$ or $J^{m+n} \subset J^n$.

Lemma 4.9. Let I and J be ideals of R and suppose that I + J = 1. Then the natural map

$$\phi: R \longrightarrow R/I \oplus R/J$$

is surjective with kernel IJ.

Proof. The kernel is $I \cap J$ which equals IJ from the Lemma above. Now, to see that it is surjective, write a+b=1 with $a \in I$ and $b \in J$. Then b=1-a and $\phi(b)=(1,0)$ and $\phi(a)=(0,1)$. Since $\phi(R)$ is clearly a $R/I \oplus R/J$ module and $R/I \oplus R/J$ is generated by (1,0) and (0,1) as an $R/I \oplus R/J$ module, ϕ must be surjective.

Lemma 4.10. If $I + J_1 = 1$ and $I + J_2 = 1$, then $I + J_1 J_2 = 1$.

Proof. Writing a + b = 1 for $a \in I$ and $b \in J_1$ and writing a' + b' = 1 for $a \in I$ and $b \in J_2$, we see that

$$1 = (a+b)(a'+b') = aa' + ab' + ba' + bb' \subset I + J_1J_2.$$

Proposition 4.11. (Chinese Remainder theorem) Let R be a ring and let I_1, \ldots, I_n be a set of ideals of R such that $I_j + I_k = 1$ for $j \not - j$. Then the natural map

$$R \longrightarrow \bigoplus_{j=1}^{n} R/I_{j}$$

is surjective with kernel $I_1 \cdots I_n$.

Proof. We proceed by induction on n. If n=1, then the result is obvious. Otherwise, write $I:=I_1$ and $J:=I_2\cdots I_n$. Applying the lemmas above, I+J=1 and the natural map

$$R \longrightarrow R/I \oplus R/J$$

is surjective with kernel IJ. Since the natural map

$$R \longrightarrow \bigoplus_{j=2}^{n} R/I_{j}$$

is surjective with kernel $I_2 \cdots I_n$ by the inductive hypothesis, we are done.

One more criterion related to being a DVR.

Proposition 4.12. Let A be a Noetherian local ring with maximal ideal \mathcal{M} . Suppose that

$$Rx_1 + \dots + Rx_n + \mathcal{M}^2 = \mathcal{M},$$

for $x_i \in R$. Then $Rx_1 + \cdots + Rx_n = \mathcal{M}$.

Proof. Let $N = \mathcal{M}/(Rx_1 + \dots Rx_n)$. Then $\mathcal{M}N = N$, so N = 0 by Nakayama's lemma, since N is finitely generated.

Corollary 4.13. Let A be a Noetherian local ring. Let \mathcal{M} be its maximal ideal and let k be the residue field A/\mathcal{M} . Then

$$\dim_k \mathcal{M}/\mathcal{M}^2 = 1$$

if and only if M is principal

Proof. One direction is easy: If \mathcal{M} is generated by π , then $\mathcal{M}/\mathcal{M}^2$ is generated by the image of π modulo \mathcal{M}^2 . To prove the other direction, suppose that $\mathcal{M}/\mathcal{M}^2$ has dimension 1. Then we can write $\mathcal{M}=Ra+\mathcal{M}^2$ for some $a\in\mathcal{M}$. Then the module $M=\mathcal{M}/a$ has the property that $\mathcal{M}M=M$, since any element in M can be written as ca+d for $c\in R$ and $d\in \mathcal{M}^2$. By Nakayama's lemma, we thus have M=0, so $\mathcal{M}=Ra$.