Math 568

Definition 4.1. A discrete valuation on a field K is a surjective ho-
momorphism from K* onto the additive group of Z such that

(1) v(zy) = v(@) + (y);
(2) v(z +y) = min(v(z), v(y))-

By convention, we say that v(0) = oo.

Remark 4.2. Note that it follows from property 2 that if v(z) > v(y),
then v(z + y) = v(y). To prove this we note that v(—x) = v(z) and
v(y) = v(—vy), so we have

v(y) = min(v(z +y), v(=2)) = v(z +y)
since v(x) > v(y). Since v(z +y) > min(v(z),v(y)) also, we must have
vz +y) =v(y).

Example 4.3. Let v, be the p-adic valuation on Q. That is to say
that v,(a) is the largest power dividing a for a € Z and v,(a/b) =
vp(a) — v,(b) for a,b € Z.

Definition 4.4. A discrete valuation R ring is a set of the form
{a € K | v(a) >0}

Note that since we have assumed that v is surjective a field is not a
DVR. This is different from the terminology used in the book. The key
fact about DVR’s is that if we pick a 7 for which v(7r) = 1, then every
element in a in R can be written as un™ for some n > 0. Indeed, this
follows form the fact that a/7%® must have valuation 1 and therefore
be a unit. Thus, Ra is the only maximal ideal in R.

How can we identify a DVR? The following will help.

A couple remarks first:

(1) If I and J are principal then so is I.J. In particular, any power of
a principal ideal is principal.
(2) Notation: for any ideal I of R, we say I° = R.

Proposition 4.5. Let R be a Noetherian local domain of dimension 1
with mazimal ideal M and with R/ M = k its residue field. Then the
following are equivalent

(1) Ris a DVR;

(2) R is integrally closed;

(3) M is principal;

(4) there is some m € R such that every elementa € R can be written

uniquely as um™ for some unit u and some integer n > 0.
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(5) every nonzero ideal is a power of M;

Proof. (1 = 2) Suppose that b € K \ R. Then v(b) < 0, so for any
monic polynomial in b with coefficients in R, we have

(0" 4 apb" -+ ag) = v(b?) <0,

which means that 0" + a,b" ' + -+ + ag # 0.

(2 = 3) Let a € M. There is some n for which M" C (a) (by“Poor
Man’s Factorization” in Noetherian rings) but M"~! is not contained
in (a) (note n—1 could be zero). Let b € M™ 1\ (a) and let z = a/b. We
can show that M = Rz. This is equivalent to showing that 27 'M = R.
Note that since (b) is not in (a), b/a = x~! cannot be in R. Hence, it
cannot be integral over R. By Cayley-Hamilton, 7'M # M since M
is finitely generated as an R-module and 7! ¢ R and R is integrally
closed. Since z7'*M is an R-module and ' M C R (this follows from
the fact that bM C M™ C (a)), this means that 7'M is an ideal of
R not contained in M. So x7'M = R, as desired.

(3 = 4) Let 7 generate M. Now, let a € R. We define w(a) to be
the smallest n for which M"™ C Ra; such an n exists by “Poor Man’s
Factorization” in Noetherian rings. We will show by induction that
that a can be written as ur®(® for some unit u. The case w(a) = 0 is
trivial, since w(a) = 0 means a is a unit. If w(a) > 1, then a € M.
Then we can write a = wb for some b. Since, any element in M", which
is simply the set of z#n™ for 2 € R, can be written as xa for some x € R,
any element zr®(®=1 in M®(@=1 can be written as xb for that same
x. Hence w(b) < w(a) — 1. By the same reasoning, w(b) > w(a) — 1.
Hence w(b) = w(a) — 1. So we can write b uniquely as ur™® for some
unit u, which gives a = un®® uniquely.

(4 = 5) Let I be an ideal of R. Since [ is finitely generated, it has
generators my, ..., m, which can all be written as u;mw%. Then the 7 for
which ¢; is smallest will generate I from above.

(5= 1) Let a € R. Then Ra = M™ for some unique n. Letting
v(a) = n gives the desired valuation.

O

Example 4.6. The ideal P generated by 2 and v/5 — 5 in Z[\/g] is
prime but Z[v/5]p is not a DVR. More on this later.

Definition 4.7. A Dedekind domain is a Noetherian domain R such
that Rp is a DVR for every nonzero prime P of R.

Recall that in any noetherian ring R for every ideal I we can write

[[P; € I withP; D I. We'll prove that in a Dedekind domain we can
i=1
write get an inequality and get it uniquely.
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One more thing: we’ll want to work in Noetherian domains of (Krull)
dimension 1 more generally, as you’ll see later. So we’ll try to state
results for them when possible.

To understand how to factorize an ideal I, we’ll want to understand
R/I. To help us with this we’ll want the Chinese remainer theorem.

The Chinese remainder theorem really consists of writing 1 in a lot
of different ways. Let’s prove the following easy Lemma.

Lemma 4.8. Let I and J be ideals in R. Suppose that I + J = 1.
Then

(1) InJ=1J; and

(2) for any positive integers m,n, we have I + J" = 1.
Proof. Since I + J = 1, we can write a+b =1fora € I and b € J.
Now 1. follows from the fact that for if x € INJ, then x = (a +b)z =
ar +bx € IJ, so INJ C IJ. The reverse inclusion IJ U I N J is
obvious. To prove 2., we simply write (a 4 b)2™*™ = 1, and note that

the expansion of (a + b)2™*™ consists entirely of elements in either
It c ™ or Jmtn C Jn. U

Lemma 4.9. Let I and J be ideals of R and suppose that I + J = 1.
Then the natural map

¢o:R— R/I®R/J
15 surjective with kernel 1.J.

Proof. The kernel is I N J which equals /J from the Lemma above.
Now, to see that it is surjective, write a +b =1 with a € I and b € J.
Then b = 1 — a and ¢(b) = (1,0) and ¢(a) = (0,1). Since ¢(R) is
clearly a R/I & R/J module and R/I & R/J is generated by (1,0) and
(0,1) as an R/I & R/J module, ¢ must be surjective. O

Lemma 4.10. If I+ Ji=1and I + J, =1, then I + J1Jy = 1.

Proof. Writing a +b =1 for a € I and b € J; and writing ' +b =1
for a € I and b € J,, we see that

I1=(a+b)(d+V)=ad +ab +ba" +0V C I+ JyJs.
U

Proposition 4.11. (Chinese Remainder theorem) Let R be a ring and
let I,..., 1, be a set of ideals of R such that I; + I, = 1 for j /~=j.
Then the natural map

R — éR/fj
j=1

18 surjective with kernel Iy ---1I,,.
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Proof. We proceed by induction on n. If n = 1, then the result is
obvious. Otherwise, write I := I; and J := I,---1,. Applying the
lemmas above, I + J = 1 and the natural map

R— R/I®R/J]

is surjective with kernel 1.J. Since the natural map
R— PR/
=2

is surjective with kernel I, --- I, by the inductive hypothesis, we are
done. ]

One more criterion related to being a DVR.

Proposition 4.12. Let A be a Noetherian local ring with maximal ideal
M. Supppose that

Rxy+ -+ Rz, + M?* = M,
for x; € R. Then Rxy + ---+ Rx, = M.

Proof. Let N = M/(Rxz1 + ...Rx,). Then MN = N, so N = 0 by
Nakayama’s lemma, since N is finitely generated. 0

Corollary 4.13. Let A be a Noetherian local ring. Let M be its max-
imal ideal and let k be the residue field A/M. Then

dimy M/ M? =1
iof and only if M is principal

Proof. One direction is easy: If M is generated by m, then M/ M? is
generated by the image of 7 modulo M?2. To prove the other direction,
suppose that M /M? has dimension 1. Then we can write M = Ra +
M? for some a € M. Then the module M = M /a has the property
that MM = M, since any element in M can be written as ca + d for
¢ € R and d € M?. By Nakayama’s lemma, we thus have M = 0, so
M = Ra. O



