Math 568

Definition 3.1. A ring A is said to be Noetherian if it satisfies the ascending chain condition which states that if there is a sequence of ideals I_{m} such that

$$
I_{0} \subseteq I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{m} \subseteq \ldots
$$

then there is an N such that for all $n \geq N$, we have $I_{n}=I_{n+1}$. In other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no larger proper ideal J containing I. Maximal ideals are usually written as \mathcal{M}.

Lemma 3.2. Let A be a Noetherian ring. Any subset \mathcal{S} of ideals of A has a maximal element (here maximal means that there is no strictly larger ideal $I^{\prime} \supset I$ in \mathcal{S}).

Proof. Let $I_{0} \in \mathcal{S}$. If I is not maximal in \mathcal{S} there is a larger ideal $I_{1} \in \mathcal{S}$ containing I_{0}. Similarly, if I_{1} is not maximal there is a larger ideal $I_{2} \in \mathcal{S}$ containing it and so on, so we have an ascending chain of ideals

$$
I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{m} \subseteq \ldots
$$

which means that there is some N such that for all $n \geq N$, we have $I_{n}=I_{n+1}$ Then I_{N} is a maximal element of \mathcal{S}.

Proposition 3.3. R is Noetherian \Leftrightarrow every ideal of R is finitely generated.

Proof. (\Rightarrow) Let J be an ideal and let \mathcal{S}_{J} be set of all finitely generated ideals contained in J. This set is nonempty since for any $a \in J$, the ideal $R a \subset J$ is finitely generated. Let I be a maximal element of \mathcal{S}_{J}. If I is not equal to J, then there is some $b \in J$ such that $b \notin I$. But $I+R a$ is also finitely generated and strictly larger than I, so this is impossible. Thus, $I=J$ and j is finitely generated.
(\Leftarrow) Let

$$
I_{0} \subseteq I_{1} \subseteq \cdots \subseteq I_{m} \subseteq \ldots,
$$

be an ascending chain of ideals. Then $\cup_{j=0}^{\infty} I_{j}$ is an ideal (easy to check) and is finitely generated, by, say, the set a_{1}, \ldots, a_{ℓ}. Each a_{i} is in some I_{j} so there is an I_{N} containing all of the a_{i}. Thus, $I_{N}=\cup_{j=0}^{\infty} I_{j}$ and $I_{n+1}=I_{n}$ for every $n \geq N$.

Recall an ideal \mathcal{P} is said to be prime if $a b \in \mathcal{P}$ implies that either $a \in \mathcal{P}$ or $b \in \mathcal{P}$.

Definition 3.4. The dimension of a ring is the largest n for which there exists a chain of prime ideals

$$
\mathcal{P}_{0} \subset \mathcal{P}_{1} \subset \cdots \subset \mathcal{P}_{n}
$$

where the \mathcal{P}_{i} are prime ideals and $\mathcal{P}_{i} \neq \mathcal{P}_{i+1}$ (for $i=1, \ldots, n-1$).
Not all rings are finite dimensional, e.g. $k\left[\left(x_{i}\right)_{i=1}^{\infty}\right]$. This ring isn't Noetherian either. But furthermore, not all Noetherian rings are finite dimensional. However, all local Noetherian rings are finite dimensional.

Now, let's define localization... Let A be a domain and let $S \subset A$ be closed under multiplication and suppose that $0 \notin S$. Then, we can form a the ring $S^{-1} A$ which is the set of fraction of the form

$$
\frac{a}{s}
$$

where $a \in A$ and $s \in S$ subject to the equivalence relation

$$
\frac{a}{s}=\frac{b}{t}
$$

if $a t=b s$. It is easy to check that is well-defined, e.g. that if $a t=b s$ and $a^{\prime} t^{\prime}=b^{\prime} s^{\prime}$ then

$$
\frac{a}{s} \frac{b}{t}=\frac{a^{\prime}}{s^{\prime}} \frac{b^{\prime}}{t^{\prime}}
$$

and

$$
\frac{a}{s}+\frac{b}{t}=\frac{a^{\prime}}{s^{\prime}}+\frac{b^{\prime}}{t^{\prime}} .
$$

Note furthermore that s / s serves as 1 and that $0 / s$ serves as 0 . Also there is a natural map sending A into $S^{-1} A$ by fixing $s \in S$ and sending a to $a s / s$.

Remark 3.5. Note that we need to change things slightly when S contains zero divisors. We say that $a / s=a^{\prime} / s^{\prime}$ if there exists some $t \in S$ such that $t a s^{\prime}=t a^{\prime} s$.

On the other hand, when A is a domain the map $A \longrightarrow S^{-1} A$ is always injective. Since $a / 1=0 / t$ implies that at $=0$ which implies that $a=0$.

When \mathcal{P} is a prime elements than $A \backslash \mathcal{P}$ is multiplicatively closed set since $a, b \notin \mathcal{P}$ implies that $a b \notin \mathcal{P}$. This is the most important example of localization and in this case $S^{-1} A$ is written as $A_{\mathcal{P}}$. Examples...

Example 3.6. Localizing \mathbb{Z} at the ideal (p) for p a prime number we get the set of elements of \mathbb{Q} that can be written as a / s where s is not divisible by p.

Some more notation...people frequently write R_{S} rather $S^{-1} R$ simply because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.7. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in R_{S}.

Proof. Denote the map from R into R_{S} as ϕ. Every prime ideal \mathcal{Q} in R_{S} pulls back to a prime ideal $\phi^{-1}(\mathcal{Q})$ of R. We also see that an ideal \mathcal{P} in R is equal to $\phi^{-1}(\mathcal{Q})$ for some \mathcal{Q} in R_{S} if $\phi(\mathcal{P})$ is a prime ideal and $\phi^{-1}(\phi(\mathcal{P}))=\mathcal{P}$. Now, if there is some $s \in S \cap \mathcal{P}$, then clearly $R_{S} \mathcal{P}=1$, since $\frac{1}{s} s=1$. So it only remains to show that if \mathcal{P} is a prime that doesn't intersect S, then $R_{s} \mathcal{P}$ is a prime ideal. It is easy to see that $R_{s} \mathcal{P}$ consists of all a / s for which $a \in \mathcal{P}$ and $s \in S$. Now, suppose that

$$
\frac{x}{t} \frac{y}{t^{\prime}}=\frac{a}{s}
$$

for $x, y \in R, t, t^{\prime} \in S$ and $a / s \in R_{S}$. Then xys $=a t t^{\prime}$, so $x y \in \mathcal{P}$ (since $s \notin \mathcal{P}$, so either x or y is in \mathcal{P}, so either x / t or y / t^{\prime} is in $R_{S} \mathcal{P}$. Thus, $R_{S} \mathcal{P}$ is indeed a prime ideal.

Forming $S^{-1} R$ is called localizing R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.8. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in R_{S}.

Proof. The idea was that for any prime \mathcal{Q} in $S^{-1} R$, we know that $\mathcal{Q} \cap(R \cap S)$ is empty. Then, for any \mathcal{P}, we have that $S^{-1} R \mathcal{P}$ is a prime ideal in $S^{-1} R$.

Notation $S^{-1} R$ is often denoted as R_{S}.
Forming $S^{-1} R$ is called localizing R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Let's first show a weak unique factorization result that holds for all Noetherian rings.

Proposition 3.9. (Poor man's unique factorization) Let R be a Noetherian ring and let I be an ideal in R. Then I has the property that there exist (not necessarily distinct) prime ideals $\left(\mathcal{P}_{i}\right)_{i=1}^{n}$ such that

4

- $\mathcal{P}_{i} \supset I$ for each i; and
- $\prod_{i=1}^{n} \mathcal{P}_{i} \subset I$.

Proof. Let \mathcal{S} be the set of ideals of R not having this property. Then \mathcal{S} has a maximal element, call it I. We can assume I is not prime since prime ideals trivially have the desired property. Thus, there exist $a, b \notin I$ such that $a b \in I$. The ideals $I+R a$ and $I+R b$ are larger than I, so must have prime ideals \mathcal{P}_{i} and \mathcal{Q}_{j} such that

$$
\prod_{i=1}^{n} \mathcal{P}_{i} \subset I+R a
$$

with $\mathcal{P}_{i} \supset I+R a \supset I$ and

$$
\prod_{i=1}^{n} \mathcal{Q}_{i} \subset I+R b
$$

with $\mathcal{Q}_{i} \supset I+R b \supset I$. Also, $(I+R a)(I+R b) \subset I$ so

$$
\prod_{i=1}^{n} \mathcal{P}_{i} \prod_{i=1}^{n} \mathcal{Q}_{i} \subset I
$$

and I does have the desired property after all.
There is no uniqueness at all here. Let's get a very, very weak uniqueness result for for local rings.

Proposition 3.10. Let R be a local integral domain with maximal ideal \mathcal{M}. Then $\mathcal{M}^{n} \neq \mathcal{M}^{n+1}$ for $n \geq 1$.

Proof. Since $\mathcal{M}^{n} \neq 0$ for any n, we may apply Nakayama's lemma below to \mathcal{M} considered as an R-module.

Lemma 3.11. (Nakayama's lemma) Let R be a local ring with maximal ideal \mathcal{M} and let M be a finitely generated R-module. Suppose that $\mathcal{M} M=M$. Then $M=0$.

Proof. The proof is similar to that of the Cayley-Hamilton theorem. Let m_{1}, \ldots, m_{n} generate M. Then $\mathcal{M} M$ will be the set of all sums $\sum_{j=1}^{n} a_{j} m_{j}$ where $a_{j} \in \mathcal{M}$. In particular, we can write

$$
1 \cdot m_{i}=\sum_{j=1}^{n} a_{i j} m_{j}
$$

We form the matrix $T:=I-\left[a_{i j}\right]$ as $n \times n$ matrix over A and treat as an endomorphism of M^{n} (as in Cayley-Hamilton). Then, as in CayleyHamilton $T\left(m_{1}, \ldots, m_{n}\right)^{t}=0$ (i.e., T times the column vector with entries m_{i}), which means that $U T\left(m_{1}, \ldots, m_{n}\right)^{t}=0$ which means that $(\operatorname{det} T) m_{i}=0$ for each i, so $(\operatorname{det} T) M=0$. Expanding out $\operatorname{det} T$, we note that all the $a_{i j}$ are in \mathcal{M} so we obtain

$$
\left(1^{n}+1^{n-1}+b_{n-1} 1^{n-1}+\cdots+b_{0}\right) M=0 .
$$

Now $1+b_{n-1}+\ldots b_{0}$ is not in \mathcal{M} so it must be a unit u. Then we have $u M=0$, so $u^{-1} u M=0$, so $1 M=0$, so $M=0$.

Earlier we said that we wanted to show that \mathcal{O}_{K} had many of the same properties as \mathbb{Z}. What we will in fact show is that \mathcal{O}_{K} is something called a Dedekind domain. A Dedekind domain is a simple kind of ring. Let us first define an even simpler kind of ring, a discrete valuation ring, frequently called a DVR.

Definition 3.12. A discrete valuation on a field K is a surjective homomorphism from K^{*} onto the additive group of \mathbb{Z} such that
(1) $v(x y)=v(x)+(y)$;
(2) $v(x+y) \geq \min (v(x), v(y))$.

By convention, we say that $v(0)=\infty$.
Remark 3.13. Note that it follows from property 2 that if $v(x)>v(y)$, then $v(x+y)=v(y)$. To prove this we note that $v(-x)=v(x)$ and $v(y)=v(-y)$, so we have

$$
v(y) \geq \min (v(x+y), v(-x)) \geq v(x+y)
$$

since $v(x)>v(y)$. Since $v(x+y) \geq \min (v(x), v(y))$ also, we must have $v(x+y)=v(y)$.

Example 3.14. Let v_{p} be the p-adic valuation on \mathbb{Q}. That is to say that $v_{p}(a)$ is the largest power dividing a for $a \in \mathbb{Z}$ and $v_{p}(a / b)=$ $v_{p}(a)-v_{p}(b)$ for $a, b \in \mathbb{Z}$.

