Math 568

Definition 3.1. A ring A is said to be *Noetherian* if it satisfies the *ascending chain condition* which states that if there is a sequence of ideals I_m such that

$$I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_m \subseteq \ldots$$

then there is an N such that for all $n \ge N$, we have $I_n = I_{n+1}$. In other word, the chain becomes stationary.

A quick word on maximality: an ideal I is maximal if there is no larger proper ideal J containing I. Maximal ideals are usually written as \mathcal{M} .

Lemma 3.2. Let A be a Noetherian ring. Any subset S of ideals of A has a maximal element (here maximal means that there is no strictly larger ideal $I' \supset I$ in S).

Proof. Let $I_0 \in S$. If I is not maximal in S there is a larger ideal $I_1 \in S$ containing I_0 . Similarly, if I_1 is not maximal there is a larger ideal $I_2 \in S$ containing it and so on, so we have an ascending chain of ideals

$$I_0 \subseteq I_1 \subseteq \cdots \subseteq I_m \subseteq \ldots,$$

which means that there is some N such that for all $n \geq N$, we have $I_n = I_{n+1}$ Then I_N is a maximal element of S.

Proposition 3.3. R is Noetherian \Leftrightarrow every ideal of R is finitely generated.

Proof. (\Rightarrow) Let J be an ideal and let S_J be set of all finitely generated ideals contained in J. This set is nonempty since for any $a \in J$, the ideal $Ra \subset J$ is finitely generated. Let I be a maximal element of S_J . If I is not equal to J, then there is some $b \in J$ such that $b \notin I$. But I + Ra is also finitely generated and strictly larger than I, so this is impossible. Thus, I = J and j is finitely generated. (\Leftarrow) Let

$$I_0 \subseteq I_1 \subseteq \cdots \subseteq I_m \subseteq \ldots,$$

be an ascending chain of ideals. Then $\bigcup_{j=0}^{\infty} I_j$ is an ideal (easy to check) and is finitely generated, by, say, the set a_1, \ldots, a_ℓ . Each a_i is in some I_j so there is an I_N containing all of the a_i . Thus, $I_N = \bigcup_{j=0}^{\infty} I_j$ and $I_{n+1} = I_n$ for every $n \ge N$.

Recall an ideal \mathcal{P} is said to be prime if $ab \in \mathcal{P}$ implies that either $a \in \mathcal{P}$ or $b \in \mathcal{P}$.

Definition 3.4. The *dimension* of a ring is the largest n for which there exists a chain of prime ideals

$$\mathcal{P}_0 \subset \mathcal{P}_1 \subset \cdots \subset \mathcal{P}_n,$$

where the \mathcal{P}_i are prime ideals and $\mathcal{P}_i \neq \mathcal{P}_{i+1}$ (for $i = 1, \ldots, n-1$).

Not all rings are finite dimensional, e.g. $k[(x_i)_{i=1}^{\infty}]$. This ring isn't Noetherian either. But furthermore, not all Noetherian rings are finite dimensional. However, all local Noetherian rings *are* finite dimensional.

Now, let's define localization... Let A be a domain and let $S \subset A$ be closed under multiplication and suppose that $0 \notin S$. Then, we can form a the ring $S^{-1}A$ which is the set of fraction of the form

 $\frac{a}{s}$

where $a \in A$ and $s \in S$ subject to the equivalence relation

$$\frac{a}{s} = \frac{b}{t}$$

if at = bs. It is easy to check that is well-defined, e.g. that if at = bs and a't' = b's' then

$$\frac{a}{s}\frac{b}{t} = \frac{a'}{s'}\frac{b'}{t'}$$

and

$$\frac{a}{s} + \frac{b}{t} = \frac{a'}{s'} + \frac{b'}{t'}.$$

Note furthermore that s/s serves as 1 and that 0/s serves as 0. Also there is a natural map sending A into $S^{-1}A$ by fixing $s \in S$ and sending a to as/s.

Remark 3.5. Note that we need to change things slightly when S contains zero divisors. We say that a/s = a'/s' if there exists some $t \in S$ such that tas' = ta's.

On the other hand, when A is a domain the map $A \longrightarrow S^{-1}A$ is always injective. Since a/1 = 0/t implies that at = 0 which implies that a = 0.

When \mathcal{P} is a prime elements than $A \setminus \mathcal{P}$ is multiplicatively closed set since $a, b \notin \mathcal{P}$ implies that $ab \notin \mathcal{P}$. This is the most important example of localization and in this case $S^{-1}A$ is written as $A_{\mathcal{P}}$. Examples...

Example 3.6. Localizing \mathbb{Z} at the ideal (p) for p a prime number we get the set of elements of \mathbb{Q} that can be written as a/s where s is not divisible by p.

Some more notation...people frequently write R_S rather $S^{-1}R$ simply because it is easier to write (for example, Janusz does this).

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.7. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in R_S .

Proof. Denote the map from R into R_S as ϕ . Every prime ideal \mathcal{Q} in R_S pulls back to a prime ideal $\phi^{-1}(\mathcal{Q})$ of R. We also see that an ideal \mathcal{P} in R is equal to $\phi^{-1}(\mathcal{Q})$ for some \mathcal{Q} in R_S if $\phi(\mathcal{P})$ is a prime ideal and $\phi^{-1}(\phi(\mathcal{P})) = \mathcal{P}$. Now, if there is some $s \in S \cap \mathcal{P}$, then clearly $R_S \mathcal{P} = 1$, since $\frac{1}{s}s = 1$. So it only remains to show that if \mathcal{P} is a prime that doesn't intersect S, then $R_s \mathcal{P}$ is a prime ideal. It is easy to see that $R_s \mathcal{P}$ consists of all a/s for which $a \in \mathcal{P}$ and $s \in S$. Now, suppose that

$$\frac{x}{t}\frac{y}{t'} = \frac{a}{s}$$

for $x, y \in R, t, t' \in S$ and $a/s \in R_S$. Then xys = att', so $xy \in \mathcal{P}$ (since $s \notin \mathcal{P}$, so either x or y is in \mathcal{P} , so either x/t or y/t' is in $R_S\mathcal{P}$. Thus, $R_S\mathcal{P}$ is indeed a prime ideal.

Forming $S^{-1}R$ is called *localizing* R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Some theorems from the book about localization. A quick note on prime ideals: we do not consider the whole ring R to be a prime ideal.

Lemma 3.8. Let R be an integral domain. Let S be a multiplicative subset of R that does not contain 0. There is a bijection between the primes in R that do not intersect S and the primes in R_S .

Proof. The idea was that for any prime \mathcal{Q} in $S^{-1}R$, we know that $\mathcal{Q} \cap (R \cap S)$ is empty. Then, for any \mathcal{P} , we have that $S^{-1}R\mathcal{P}$ is a prime ideal in $S^{-1}R$.

Notation $S^{-1}R$ is often denoted as R_S .

Forming $S^{-1}R$ is called *localizing* R. We define a local ring to be a ring with only one maximal ideal, e.g. $\mathbb{Z}_{(p)}$ is a local ring.

Let's first show a weak unique factorization result that holds for all Noetherian rings.

Proposition 3.9. (Poor man's unique factorization) Let R be a Noetherian ring and let I be an ideal in R. Then I has the property that there exist (not necessarily distinct) prime ideals $(\mathcal{P}_i)_{i=1}^n$ such that • $\mathcal{P}_i \supset I$ for each *i*; and

•
$$\prod_{i=1}^n \mathcal{P}_i \subset I.$$

4

Proof. Let S be the set of ideals of R not having this property. Then S has a maximal element, call it I. We can assume I is not prime since prime ideals trivially have the desired property. Thus, there exist $a, b \notin I$ such that $ab \in I$. The ideals I + Ra and I + Rb are larger than I, so must have prime ideals \mathcal{P}_i and \mathcal{Q}_j such that

$$\prod_{i=1}^{n} \mathcal{P}_i \subset I + Ra$$

with $\mathcal{P}_i \supset I + Ra \supset I$ and

$$\prod_{i=1}^{n} \mathcal{Q}_i \subset I + Rb$$

with $\mathcal{Q}_i \supset I + Rb \supset I$. Also, $(I + Ra)(I + Rb) \subset I$ so $\prod_{i=1}^n \mathcal{P}_i \prod_{i=1}^n \mathcal{Q}_i \subset I$

and I does have the desired property after all.

There is no uniqueness at all here. Let's get a very, very weak uniqueness result for for local rings.

Proposition 3.10. Let R be a local integral domain with maximal ideal \mathcal{M} . Then $\mathcal{M}^n \neq \mathcal{M}^{n+1}$ for $n \geq 1$.

Proof. Since $\mathcal{M}^n \neq 0$ for any n, we may apply Nakayama's lemma below to \mathcal{M} considered as an R-module.

Lemma 3.11. (Nakayama's lemma) Let R be a local ring with maximal ideal \mathcal{M} and let M be a finitely generated R-module. Suppose that $\mathcal{M}M = M$. Then M = 0.

Proof. The proof is similar to that of the Cayley-Hamilton theorem. Let m_1, \ldots, m_n generate M. Then $\mathcal{M}M$ will be the set of all sums $\sum_{j=1}^n a_j m_j$ where $a_j \in \mathcal{M}$. In particular, we can write

$$1 \cdot m_i = \sum_{j=1}^n a_{ij} m_j.$$

We form the matrix $T := I - [a_{ij}]$ as $n \times n$ matrix over A and treat as an endomorphism of M^n (as in Cayley-Hamilton). Then, as in Cayley-Hamilton $T(m_1, \ldots, m_n)^t = 0$ (i.e., T times the column vector with entries m_i), which means that $UT(m_1, \ldots, m_n)^t = 0$ which means that $(\det T)m_i = 0$ for each i, so $(\det T)M = 0$. Expanding out $\det T$, we note that all the a_{ij} are in \mathcal{M} so we obtain

$$1^{n} + 1^{n-1} + b_{n-1}1^{n-1} + \dots + b_{0})M = 0.$$

Now $1 + b_{n-1} + \ldots b_0$ is not in \mathcal{M} so it must be a unit u. Then we have uM = 0, so $u^{-1}uM = 0$, so 1M = 0, so M = 0.

Earlier we said that we wanted to show that \mathcal{O}_K had many of the same properties as \mathbb{Z} . What we will in fact show is that \mathcal{O}_K is something called a *Dedekind domain*. A Dedekind domain is a simple kind of ring. Let us first define an even simpler kind of ring, a *discrete valuation ring*, frequently called a DVR.

Definition 3.12. A discrete valuation on a field K is a surjective homomorphism from K^* onto the additive group of \mathbb{Z} such that

(1)
$$v(xy) = v(x) + (y);$$

(2)
$$v(x+y) \ge \min(v(x), v(y)).$$

By convention, we say that $v(0) = \infty$.

Remark 3.13. Note that it follows from property 2 that if v(x) > v(y), then v(x + y) = v(y). To prove this we note that v(-x) = v(x) and v(y) = v(-y), so we have

$$v(y) \ge \min(v(x+y), v(-x)) \ge v(x+y)$$

since v(x) > v(y). Since $v(x+y) \ge \min(v(x), v(y))$ also, we must have v(x+y) = v(y).

Example 3.14. Let v_p be the *p*-adic valuation on \mathbb{Q} . That is to say that $v_p(a)$ is the largest power dividing *a* for $a \in \mathbb{Z}$ and $v_p(a/b) = v_p(a) - v_p(b)$ for $a, b \in \mathbb{Z}$.