Math 568 Tom Tucker

NOTE: ALL RINGS IN THIS CLASS ARE COMMUTATIVE WITH MULTIPLICATIVE IDENTITY 1 ($1 \cdot a = a$ for every $a \in A$, where Ais the ring) AND ADDITIVE IDENTITY 0 (0 + a = a for every $a \in A$ where A is the ring)

Definition 2.1. A ring R is called a principal ideal domain if for any ideal $I \subset R$ there is an element $a \in I$, such that I = Ra.

Later we'll see that for the rings we work with in this class, principal ideal domains and unique factorization domains are the same thing.

Proposition 2.2 (Easy). Let $A \subset B$. Then b is integral over $A \Leftrightarrow A[b]$ is finitely generated as an A-module.

Proof. (\Rightarrow) Writing

 $b^n + a_{n-1}b^{n-1} + \dots + a_1b + a_0 = 0,$

we see that b^n is contained in the A-module generated by $\{1, b, \ldots, b^{n-1}\}$. Similarly, by induction on r > 0, we see that b^{n+r} is contained in the A-module generated by $\{1, b, \ldots, b^{n-1}\}$, since

 $b^{n+r} = -(a_{n-1}b^{n-1} + \dots + a_1b + a_0)b^r,$

and is therefore contained in A-module generated by $\{1, b, \dots, b^{n+(r-1)}\}$.

(\Leftarrow) Let $\left\{\sum_{j=1}^{N_i} a_{ij} b^j\right\}_{i=1}^{S}$ generate A[b]. Then for M larger than the

largest N_i , the element b^M can be written as A-linear combination of lower powers of b. This yields an integral polynomial over A satisfied by b.

Definition 2.3. We say that $A \subset B$ is integral, or that B is integral over A if every $b \in B$ is integral over A.

Corollary 2.4. If $A \subset B$ is integral and $B \subset C$ is integral, then $A \subset C$ is integral.

Proof. Exercise.

Example 2.5. The primitive *n*-th root of unity ξ_n is integral over \mathbb{Z} since it satisfies $\xi_n^n - 1 = 0$.

Example 2.6. i/2 is not integral over \mathbb{Z} . Let's look at the algebra B it generates over \mathbb{Z} . Suppose it was finitely generated as an \mathbb{Z} -module. Then if M is the maximal power of 2 appearing in the denominator of a generator, then M is the maximal power of 2 appearing in the denominator of any element of B. But there are arbitrarily high powers of 2 appearing in the denominator of elements in B.

Theorem 2.7. (Cayley-Hamilton) Let $A \subset B$. Suppose that M is a finitely generated A-module with generators m_1, \ldots, m_n . Suppose that that M is also a faithful A[b]-module (this means the only element that annihilates all of M is 0) and that b acts on the generators m_i in the following way

(1)
$$bm_i = \sum_{j=1}^n a_{ij}m_j.$$

Then b satisfies the equation

 $\mathbf{2}$

$$\det \begin{pmatrix} b - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & b - a_{22} & \cdots & -a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{n2} & -a_{n1} & \cdots & b - a_{nn} \end{pmatrix} = 0.$$

Proof. Let T be the matrix $bI - [a_{ij}]$. The theorem then says that det T = 0. Notice that we can consider T as an endomorphism of M^n by writing

$$\begin{pmatrix} b - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & b - a_{22} & \cdots & -a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{n2} & -a_{n1} & \cdots & b - a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \cdot \\ \cdot \\ x_n \end{pmatrix} = \begin{pmatrix} bx_1 - \sum_{j=1}^n a_{1j}x_j \\ \cdot \\ \cdot \\ bx_n - \sum_{j=1}^n a_{nj}x_j \end{pmatrix}$$

where the x_i are elements of M. Let (x_1, \ldots, x_n) be (m_1, \ldots, m_n) , we obtain

$$\begin{pmatrix} b - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & b - a_{22} & \cdots & -a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{n2} & -a_{n1} & \cdots & b - a_{nn} \end{pmatrix} \begin{pmatrix} m_1 \\ \cdot \\ m_n \end{pmatrix} = \begin{pmatrix} bm_1 - \sum_{j=1}^n a_{1j}m_j \\ \cdot \\ m_n \end{pmatrix} = \begin{pmatrix} 0 \\ \cdot \\ 0 \\ bm_n - \sum_{j=1}^n a_{nj}m_j \end{pmatrix}$$

by equation (??). Now, recall from linear algebra (exercise) that there is a matrix U, called the *adjoint* of T, for which $UT = (\det T)I$. We obtain

$$\begin{pmatrix} \det T & 0 & \cdots & 0 \\ 0 & \det T & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \det T \end{pmatrix} \begin{pmatrix} m_1 \\ \cdot \\ \cdot \\ m_n \end{pmatrix} = \begin{pmatrix} (\det T)m_1 \\ \cdot \\ (\det T)m_n \end{pmatrix} = \begin{pmatrix} 0 \\ \cdot \\ 0 \end{pmatrix}$$

so $(\det T)m_i = 0$ for each m_i . Hence $(\det T) = 0$, since $(\det T) \in A[b]$ and A[b] acts faithfully on M.

Corollary 2.8. Let $A \subset B$ and let $b \in B$. If $A[b] \subset B' \subset B$ for a ring B' that is finitely generated as an A-module, then b is integral over A.

Proof. Since $b \in B'$, multiplication by b sends B' to B'. Moreover, the resulting map is A-linear (by distributivity of multiplication). The action of A[b] on B' must be faithful since $c \cdot 1 = 0$ implies c = 0.

Let m_1, \ldots, m_n generate B' as an A-module. Then, for each i with $1 \le i \le n$, we can write

$$bx_i = \sum_{j=1}^n a_{ij} x_j$$

Clearly, the equation

$$\det \begin{pmatrix} b - a_{11} & -a_{21} & \cdots & -a_{n1} \\ -a_{12} & b - a_{22} & \cdots & -a_{n2} \\ \cdots & \cdots & \cdots & \cdots \\ -a_{1n} & -a_{2n} & \cdots & b - a_{nn} \end{pmatrix} = 0$$

is integral.

For now, let's note the following corollary.

Corollary 2.9. Let $A \subset B$. Then the set of all elements in B that are integral over A is a ring.

Proof. We need only show that the elements in B that are integral over A forms a ring. If α and β are integral over A, then $A[\alpha, \beta]$ is finitely generated as an A-module. Hence, $-\alpha$, $\alpha + \beta$, and $\alpha\beta$ are all integral over A since they are contained in $A[\alpha, \beta]$, by the Cayley-Hamilton theorem above.

The following is immediate.

Corollary 2.10. Let K be an extension of \mathbb{Q} . Then the set of all elements in K that are integral over \mathbb{Z} is a ring.

Again let $A \subset B$. The set B' of elements of B that are integral over A is a ring. We call this ring B' the *integral closure of* A *in* B.

Definition 2.11. Let K be a number field (a finite extension of \mathbb{Q}). The *ring of integers* of K is the integral closure of \mathbb{Z} in K. We denote is as \mathcal{O}_K .

Ask if people have seen localization.

Definition 2.12. We say that a domain B is integrally closed if it is *integrally closed* in its field of fractions.

Proposition 2.13. Let $A \subset B$ be integral, where A and B are domains. The ring B is the integral closure of A in the field of fractions of B if and only if B is integrally closed in its field of fractions.

Proof. Exercise.

4

Example 2.14. Any unique factorization domain is integrally closed.

Let's do a preview of what properties we want rings of integers to have. First let's recall some features of \mathbb{Z} :

- (1) \mathbb{Z} is Noetherian.
- (2) \mathbb{Z} is 1-dimensional.
- (3) \mathbb{Z} is a unique factorization domain.
- (4) \mathbb{Z} is a principal ideal domain.

Recall what a Noetherian ring is.

Definition 2.15. A ring R is *Noetherian* if every ideal is finitely generated as an R-module. Equivalently, R is if every ascending chain of ideals terminates.

Incidentally, we will later see that the conditions (1) and (2) are often equivalent in the situations we examine.

The rings \mathcal{O}_K will have the properties that

- (1) \mathcal{O}_K is Noetherian.
- (2) \mathcal{O}_K is 1-dimensional.
- (3) \mathcal{O}_K has unique factorization for ideals.
- (4) \mathcal{O}_K is *locally* a principal ideal domain.
- (5) It is possible that \mathcal{O}_K is not a unique factorization domain and that it is not a principal ideal domain.

In fact, any subring B of a number field K that is integral over \mathbb{Z} will be Noetherian and 1-dimensional. That is the Krull-Akizuki theorem which we will eventually prove.

Proposition 2.16. (Prop. 2.5 from Janusz) Let R be a domain with field of fractions K and let L be an algebraic extension of K. Let $b \in L$ and let f(X) be the minimal polynomial for b that has coefficients in Kand leading coefficient 1. Then, the coefficients of f are integral over R whenever b is integral over R. In particular, if R is integrally closed in K and b is integral over R, then the coefficients of f are in R.

Proof. Suppose that b is integral over R. We can write

$$f(X) = (X - b_1)(X - b_2) \cdots (X - b_n),$$

by extending L to some field E over which f splits. Note that any polynomial satisfied by b is divisible by f in K[X], so if b satisfies an integral polynomial with coefficients in R, so do all of the other b_i . Hence, if b is integral then so are all of the b_i . The coefficients of f are all in the ring $R[b_1, \ldots, b_n]$, so this also means that the coefficients of f are integral over R as desired. Now, since these coefficients are also in K, they are actually in R if R is integrally closed. \Box

So, to check if something is integral, all we have to do is check its minimal polynomial. Example, let $\alpha = \sqrt{11}/7$. Its minimal polynomial is $X^2 - 11/49$ which isn't integral over \mathbb{Z} , so we're done.