Math 568 Tom Tucker

NOTES FROM CLASS 9/3/14
Main object of study in this class will be rings like $\mathbb{Z}[i] \subset \mathbb{Q}[i]$. Let's start with an example, using the ring $\mathbb{Z}[\sqrt{-19}] \ldots$

We will show that if the ring $\mathbb{Z}[\sqrt{-19}]$ had all the same properties that \mathbb{Z} has, then the equation $x^{2}+19=y^{3}$ would have no integer solutions x and y. Suppose we did have such an integer solution $x, y \in$ \mathbb{Z}. Then we'd have $(x+\sqrt{-19})(x-\sqrt{-19})=y^{3}$.

We can show that $(x+\sqrt{-19})$ and $(x-\sqrt{-19})$ have no common prime divisors (recall notion of divisor). Let's recall the idea of primality from the integers. An integer p is prime if $p \mid a b$ implies that $p \mid a$ or $p \mid b$. We can use this same notion in any ring R : we say that π is prime if $\pi \mid a b$ implies that $p \mid a$ or $p \mid b$. Suppose that π divided both $(x+\sqrt{-19})$ and $(x-\sqrt{-19})$. Then π divides the difference of the two which is $2 \sqrt{-19}$. This would mean that π divides either 2 or $\sqrt{-19}$. This in turn would mean that either 2 or 19 divides $(x+\sqrt{-19})(x-\sqrt{-19})$, which means that 2 or 19 divides y. But this is impossible, since 19^{3} cannot divide $x^{2}+19$, nor can 2^{3} divide $x^{2}+19$. The latter follows from looking at the equation $x^{2}+19$ modulo 8 .

Thus, $(x+\sqrt{-19})$ and $(x-\sqrt{-19})$ have no common prime factor. Thus, we see that if π divides $x^{2}+19$, then π^{3} divides either $(x+\sqrt{-19})$ or ($x-\sqrt{-19}$), since π cannot divide both. This follows from factorizing the two numbers as we have assumed we can.

Hence, we see that $(x+\sqrt{-19})$ must be a perfect cube in $\mathbb{Z}[\sqrt{-19}]$ (note that $\mathbb{Z}[\sqrt{-19}]$ has no units except 1 and -1), so we can write

$$
(u+v \sqrt{-19})^{3}=x+\sqrt{-19}
$$

so

$$
x=u^{3}-57 u v^{2}
$$

and

$$
1=3 u^{2} v-19 v^{3}
$$

The latter equation gives $v\left(3 u^{2}-19 v^{2}\right)=1$, so v is 1 or -1 . If $v=1$ we obtain $3 u^{2}-19=1$, so $3 u^{2}=20$. If $v=-1$, we obtain $3 u^{2}-19=-1$, so $3 u^{2}=18$. Either way, there is no such integer u, so there was no solution to

$$
x^{2}+19=y^{3} .
$$

But there is a solution

$$
18^{2}+19=7^{3} .
$$

So something is wrong. The ring $\mathbb{Z}[\sqrt{-19}]$ is different from \mathbb{Z} in some way.

What went wrong? We don't have unique factorization, so the argument about $a b$ being a perfect cube forcing a and b to be perfect cubes isn't correct.

We'll be working with rings R that are similar to $\mathbb{Z}[\sqrt{-19}]$.

- Is R a unique factorization domain?
- If not, how badly does it fail to be a unique factorization domain?
- What can we say about the units in R ?

Definition 1.1. An element π of a ring A is said to be prime if $\pi \mid a b$ means $\pi \mid a$ or $\pi \mid b$.
Definition 1.2. A domain R is said to be a unique factorization domain if every $a \in R$ that is not a unit can be written as

$$
a=\pi_{1}^{e_{1}} \cdots \pi_{n}^{e_{n}} .
$$

Example 1.3. The integers \mathbb{Z} are a unique factorization domain.
Let's start answering the first question. A partial answer is that the good subring B will be finitely generated as a module over \mathbb{Z}. This means that all of the elements in it will be integral over \mathbb{Z}.

For the rest of the class A and B are rings Recall that a monic equation over A is an equation

$$
x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0 .
$$

Definition 1.4. Let $A \subset B$. An element $b \in B$ is said to be integral over A if b satisfies an equation of the form

$$
b^{n}+a_{n-1} b^{n-1}+\cdots+a_{1} b+a_{0}=0,
$$

where the $a_{i} \in A$ (i.e., if it satisfies an integral equation over A).
The rings we work with will be subrings of K, where K is a number field (a finite extension of \mathbb{Q}). These rings will be integral over \mathbb{Z}.

