
Math 568 Tom Tucker
NOTES FROM CLASS 12/3

FOR TODAY’S LECTURE, we have reordered the embeddings of L
into C so that for i > r, we have σi = σ̄i+s.

Recall the definition of Z(t) from last time...
Let (t) be an (r + s)-tuple of positive numbers indexed as (t)i. We

define

Z(t) :={(x1, . . . , xs+r) ∈ Rr × Cs | |xi| ≤ (t)i, 1 ≤ i ≤ r

and |xi|2 ≤ (t)i for r + 1 ≤ i ≤ r + s}

The region Z(t) is just a cross product of regions in R and C, specif-
ically it is

[−(t)1, (t)1]× · · · × [−(t)r, (t)r]

× {(x, y) | x2 + y2 ≤ (t)r+1} × · · · × {(x, y) | x2 + y2 ≤ (t)r+s}.

Thus,

Vol(Z(t)) = 2rπst1 · · · tr+s
And Z(t) is convex and centrally symmetric. Now, let’s fix a constant

T , for which

2rπsT r+s > 2n Vol(h∗(OL))

and let (γ) be any n-tuple of numbers for which

γ1 · · · γr+s = 1.

Then

Vol(Z(Tγ)) = 2rπsT n > 2n Vol(h∗(OL)),

so there exists a nonzero b ∈ Z(Tγ) ∩ h∗(OL), by Minkowski’s lemma
proven earlier. As said earlier, we want to control the signs of the logs
of our units, so we will pick a particular (γ) where (γi) < 1 for all but
one i. Specifically, we pick a number ε and define

(εi) =

{
ε : j 6= i

1/εr+s−1 : j = i

As above, we know that there is a nonzero element of h∗(OL) in Z(Tεi),
call it bi. The following Lemma is obvious. We state it to organize our
exposition.

Proposition 34.1. Let bi ∈ Z(Tεi) ∩ h∗(OL) with bi 6= 0. Then

|N(bi)| ≤ T s+r.
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Proof. Recall of course that pj(h
∗(b)) = σj(b), so if h∗(b) ∈ Z(Tεi), then

|σj(b)| ≤ (Tεi)j for 1 ≤ j ≤ r and |σj(b)|2 ≤ (Tεi)j for r + 1 ≤ j ≤
(s+ r). Thus, for bi ∈ Z(Tεi), we have

|N(bi)| ≤
r∏
j=1

|σj(b)|
s+r∏
j=r+1

|σj(b)|2 ≤
r+s∏
j=1

(Tεi)j = T r+s.

�

Unfortunately, the bi are not units. However, we need only modify
them slightly to obtain units. There are only finitely many nonzero
principal ideals in OL with norm less than T r+s (since there are finitely
many ideals inOL of bounded norm). Let us number them as I1, . . . , IN ,
write Ik = OLak, for ak ∈ OL and pick ε > 0 such that

0 < εT < min{|σi(ak)|ei , i = 1, . . . , r + s, k = 1, . . . , N},
where ei = 1 if σi is a real place and ei = 2 is σi is complex place. Note
that this min cannot be zero because ak 6= 0 and σi is injective. For
each i = 1, . . . , r + s, let Z(Tεi) and bi be as in the Proposition above.
Since N(OLbi) ≤ T r+s, the ideal OLbi is equal to some OLak(i). Let
ui = ak(i)/bi. Then, ui must be a unit since bi divides ak(i) and ak(i)
divides bi.

Proposition 34.2. Let ui be as above. Then

(1)
r∑
j=1

log |σj(ui)|+
r+s∑
j=r+1

2 log |σj(ui)| = 0

(2) log |σj(ui)| < 0 for j 6= i
(3) log |σi(ui)| > 0.

Proof. (1): This is easy since |N(ui)| = 1, so

0 = log 1 = log |N(ui)| =
r∑
j=1

log |σj(ui)|+
r+s∑
j=r+1

2 log |σj(ui)| = 0.

(2): Recall that Tε < |σj(a
ej
i(k)|, so

log |σj(ui)ei | = log
|σj(bi)ei |
|σj(ai(k))ei|

< log
Tε

|σj(ai(k))|ei
< log 1 = 0.

Thus, log |σj(ui)| = 1
2

log |σj(ui)ei | < 0 as well.
(3): Follows immediately from (1) and (2)

�

Proposition 34.3. The elements `(ui), i = 1, . . . r + s − 1 (note we
don’t go up all the way to r + s) are linearly independent over R.
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Proof. Let mij = log |σj(ui)| for 1 ≤ i ≤ r and mij = 2 log |σj(ui)| for
r + 1 ≤ i ≤ r + s− 1. Since

r∑
j=1

log |σj(ui)|+
r+s∑
j=r+1

2 log |σj(ui)| = 0,

the log |σr+s(uj)| is determined by the other log |σj(ui)|; that is why we
only go up to r+s−1. To show that the `(ui) are linearly independent,
it will suffice to show that the matrix [mij] is nonsingular. It follows
from Proposition 34.2 that for any i, we have

r+s−1∑
j=1

mij > 0.

It also follows that mij < 0 for i 6= j and mjj > 0 for any j.
The embeddings of a fixed ui gives us the i-th row of [mij]; it will

be easier to show that the columns are linearly independent over R.
Suppose that we have a set a1, . . . , ar+s−1 of real numbers, not all of
which are zero. We can show that there is some i such that

r+s−1∑
j=1

ajmij 6= 0.

Indeed, let us pick i so that |ai| ≥ |aj| for for all j; we may assume
that ai > 0 since multiplying everything though by −1 will not affect
whether or not a sum is nonzero. Then we ai ≥ aj for every j and
(since mij < 0 for i 6= j) we have

r+s−1∑
j=1

ajmij ≥ aimii +
∑
j 6=i

aimij ≥ ai

r+s−1∑
j=1

mij > 0

and we are done. �

Corollary 34.4. `(O∗L) is a full lattice in H.

Proof. We have already seen that `(O∗L) is a lattice in H. It is a full
lattice since it generates a R-vector space of dimension r+s−1, which
must be equal to H (since dimRH = r + s− 1). �

Theorem 34.5 (Dirichlet Unit Theorem). Let µL be the roots of unity
in L. There exist elements v1, . . . , vr+s−1 ∈ O∗L such that every unit
u ∈ O∗L can be written uniquely as

u = vvm1
1 · · · v

mr+s−1

r+s−1

for v ∈ µL and mi ∈ Z.
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Proof. Let v1, . . . , vr+s−1 have the property that `(v1), . . . , `(vr+s−1)
generate `(O∗L) as a Z-module. Since ker ` = µL, we know that ev-
ery unit u ∈ O∗L can be written as vz, where z is in the subgroup
generated by the v1, . . . , vr+s−1. The element z is uniquely determine
by `(u) as

vm1
1 · · · v

mr+s−1

r+s−1

for some integers mi. Then v = zu−1 and is therefore also uniquely
determined. �


