Math 568 Tom Tucker NOTES FROM CLASS 12/3

FOR TODAY'S LECTURE, we have reordered the embeddings of L into C so that for $i > r$, we have $\sigma_i = \bar{\sigma}_{i+s}$.

Recall the definition of $Z_{(t)}$ from last time...

Let (*t*) be an $(r + s)$ -tuple of positive numbers indexed as $(t)_i$. We define

$$
Z_{(t)} := \{ (x_1, \dots, x_{s+r}) \in \mathbb{R}^r \times \mathbb{C}^s \mid |x_i| \le (t)_i, 1 \le i \le r \text{ and } |x_i|^2 \le (t)_i \text{ for } r+1 \le i \le r+s \}
$$

The region $Z_{(t)}$ is just a cross product of regions in $\mathbb R$ and $\mathbb C$, specifically it is

$$
[-(t)_1, (t)_1] \times \cdots \times [-(t)_r, (t)_r]
$$

$$
\times \{(x, y) \mid x^2 + y^2 \le (t)_{r+1}\} \times \cdots \times \{(x, y) \mid x^2 + y^2 \le (t)_{r+s}\}.
$$

Thus,

$$
Vol(Z_{(t)}) = 2^r \pi^s t_1 \cdots t_{r+s}
$$

And $Z_{(t)}$ is convex and centrally symmetric. Now, let's fix a constant T, for which

$$
2^r \pi^s T^{r+s} > 2^n \operatorname{Vol}(h^*(\mathcal{O}_L))
$$

and let (γ) be any *n*-tuple of numbers for which

$$
\gamma_1 \cdots \gamma_{r+s} = 1.
$$

Then

$$
Vol(Z_{(T\gamma)}) = 2^r \pi^s T^n > 2^n Vol(h^*(\mathcal{O}_L)),
$$

so there exists a nonzero $b \in Z_{(T\gamma)} \cap h^*(\mathcal{O}_L)$, by Minkowski's lemma proven earlier. As said earlier, we want to control the signs of the logs of our units, so we will pick a particular (γ) where $(\gamma_i) < 1$ for all but one *i*. Specifically, we pick a number ϵ and define

$$
(\epsilon_i) = \begin{cases} \epsilon & \text{if } j \neq i \\ 1/\epsilon^{r+s-1} & \text{if } j = i \end{cases}
$$

As above, we know that there is a nonzero element of $h^*(\mathcal{O}_L)$ in $Z_{(Te_i)},$ call it b_i . The following Lemma is obvious. We state it to organize our exposition.

Proposition 34.1. Let $b_i \in Z_{(Te_i)} \cap h^*(\mathcal{O}_L)$ with $b_i \neq 0$. Then

$$
|N(b_i)| \leq T^{s+r}
$$

.

Proof. Recall of course that $p_j(h^*(b)) = \sigma_j(b)$, so if $h^*(b) \in Z_{(Te_i)}$, then $|\sigma_j(b)| \leq (T\epsilon_i)_j$ for $1 \leq j \leq r$ and $|\sigma_j(b)|^2 \leq (T\epsilon_i)_j$ for $r+1 \leq j \leq r$ $(s+r)$. Thus, for $b_i \in Z_{(T\epsilon_i)}$, we have

$$
|N(b_i)| \le \prod_{j=1}^r |\sigma_j(b)| \prod_{j=r+1}^{s+r} |\sigma_j(b)|^2 \le \prod_{j=1}^{r+s} (T\epsilon_i)_j = T^{r+s}.
$$

Unfortunately, the b_i are not units. However, we need only modify them slightly to obtain units. There are only finitely many nonzero principal ideals in \mathcal{O}_L with norm less than T^{r+s} (since there are finitely many ideals in \mathcal{O}_L of bounded norm). Let us number them as I_1, \ldots, I_N , write $I_k = \mathcal{O}_L a_k$, for $a_k \in \mathcal{O}_L$ and pick $\epsilon > 0$ such that

$$
0 < \epsilon T < \min\{|\sigma_i(a_k)|^{e_i}, i = 1, \ldots, r + s, k = 1, \ldots, N\},\
$$

where $e_i = 1$ if σ_i is a real place and $e_i = 2$ is σ_i is complex place. Note that this min cannot be zero because $a_k \neq 0$ and σ_i is injective. For each $i = 1, \ldots, r + s$, let $Z_{(T_{\epsilon_i})}$ and b_i be as in the Proposition above. Since $N(\mathcal{O}_L b_i) \leq T^{r+s}$, the ideal $\mathcal{O}_L b_i$ is equal to some $\mathcal{O}_L a_{k(i)}$. Let $u_i = a_{k(i)}/b_i$. Then, u_i must be a unit since b_i divides $a_{k(i)}$ and $a_{k(i)}$ divides b_i .

Proposition 34.2. Let u_i be as above. Then

 $(1) \sum_{r=1}^{r}$ $j=1$ $\log |\sigma_j(u_i)| + \sum_{i=1}^{r+s}$ $j=r+1$ $2\log|\sigma_j(u_i)|=0$ (2) $\log |\sigma_i(u_i)| < 0$ for $j \neq i$

(3) $\log |\sigma_i(u_i)| > 0$.

Proof. (1): This is easy since $N(u_i) = 1$, so

$$
0 = \log 1 = \log |N(u_i)| = \sum_{j=1}^r \log |\sigma_j(u_i)| + \sum_{j=r+1}^{r+s} 2 \log |\sigma_j(u_i)| = 0.
$$

(2): Recall that $T\epsilon < |\sigma_j(a_{i\ell}^{e_j})|$ $\frac{e_j}{i(k)}\big|,$ so

$$
\log |\sigma_j(u_i)^{e_i}| = \log \frac{|\sigma_j(b_i)^{e_i}|}{|\sigma_j(a_{i(k)})^{e_i}|} < \log \frac{T\epsilon}{|\sigma_j(a_{i(k)})|^{e_i}} < \log 1 = 0.
$$

Thus, $\log |\sigma_j(u_i)| = \frac{1}{2}$ $\frac{1}{2} \log |\sigma_j(u_i)^{e_i}| < 0$ as well.

(3): Follows immediately from (1) and (2)

Proposition 34.3. The elements $\ell(u_i)$, $i = 1, \ldots r + s - 1$ (note we don't go up all the way to $r + s$) are linearly independent over \mathbb{R} .

 \Box

Proof. Let $m_{ij} = \log |\sigma_j(u_i)|$ for $1 \leq i \leq r$ and $m_{ij} = 2 \log |\sigma_j(u_i)|$ for $r+1 \leq i \leq r+s-1$. Since

$$
\sum_{j=1}^{r} \log |\sigma_j(u_i)| + \sum_{j=r+1}^{r+s} 2 \log |\sigma_j(u_i)| = 0,
$$

the log $|\sigma_{r+s}(u_i)|$ is determined by the other log $|\sigma_i(u_i)|$; that is why we only go up to $r+s-1$. To show that the $\ell(u_i)$ are linearly independent, it will suffice to show that the matrix $[m_{ij}]$ is nonsingular. It follows from Proposition 34.2 that for any i , we have

$$
\sum_{j=1}^{r+s-1} m_{ij} > 0.
$$

It also follows that $m_{ij} < 0$ for $i \neq j$ and $m_{jj} > 0$ for any j.

The embeddings of a fixed u_i gives us the *i*-th row of $[m_{ij}]$; it will be easier to show that the columns are linearly independent over R. Suppose that we have a set a_1, \ldots, a_{r+s-1} of real numbers, not all of which are zero. We can show that there is some i such that

$$
\sum_{j=1}^{r+s-1} a_j m_{ij} \neq 0.
$$

Indeed, let us pick i so that $|a_i| \ge |a_j|$ for for all j; we may assume that $a_i > 0$ since multiplying everything though by -1 will not affect whether or not a sum is nonzero. Then we $a_i \geq a_j$ for every j and (since $m_{ij} < 0$ for $i \neq j$) we have

$$
\sum_{j=1}^{r+s-1} a_j m_{ij} \ge a_i m_{ii} + \sum_{j \ne i} a_i m_{ij} \ge a_i \sum_{j=1}^{r+s-1} m_{ij} > 0
$$

and we are done.

Corollary 34.4. $\ell(\mathcal{O}_L^*)$ is a full lattice in H.

Proof. We have already seen that $\ell(\mathcal{O}_L^*)$ is a lattice in H. It is a full lattice since it generates a R-vector space of dimension $r + s - 1$, which must be equal to H (since dim_R $H = r + s - 1$).

Theorem 34.5 (Dirichlet Unit Theorem). Let μ_L be the roots of unity in L. There exist elements $v_1, \ldots, v_{r+s-1} \in \mathcal{O}_L^*$ such that every unit $u \in \mathcal{O}_L^*$ can be written uniquely as

$$
u = v v_1^{m_1} \cdots v_{r+s-1}^{m_{r+s-1}}
$$

for $v \in \mu_L$ and $m_i \in \mathbb{Z}$.

Proof. Let v_1, \ldots, v_{r+s-1} have the property that $\ell(v_1), \ldots, \ell(v_{r+s-1})$ generate $\ell(\mathcal{O}_L^*)$ as a Z-module. Since ker $\ell = \mu_L$, we know that every unit $u \in \mathcal{O}_L^*$ can be written as vz , where z is in the subgroup generated by the v_1, \ldots, v_{r+s-1} . The element z is uniquely determine by $\ell(u)$ as

$$
v_1^{m_1}\cdots v_{r+s-1}^{m_{r+s-1}}
$$

for some integers m_i . Then $v = zu^{-1}$ and is therefore also uniquely determined. $\hfill \square$

4