
Math 568 Tom Tucker
NOTES FROM CLASS 12/1

Unit groups of rings of integers. As usual, L is a finite extension of
Q with ring of integers OL and norm N = NL/Q. We want to find out
what the group of unit O∗L looks like. First a simple proposition on
units.

Proposition 32.1. Let y ∈ OL. Then y is a unit if ⇔ if N(y) = 1.

Proof. (⇒) If y is a unit then xy = 1 for some x ∈ OL. Then
N(x) N(y) = 1. Since N(x) and N(y) are both integers, this means
that N(y) = ±1.

(⇐) It will suffice to show that N(y)
y

is in OL. Since N(y)
y

is a product of

conjugates of y, it must be integral over Z. Moroever, since N(y) and

y are in L, their quotient N(y)
y

must be as well. Thus N(y)
y
∈ OL. �

Let’s look at the case of quadratic field first. If L is an imaginary
quadratic field, then OL can be thought of as a subfield of C and
N(x) = xx̄ = a2 + b2, where x = a + ib. If a2 + b2 = 1, then a + bi
lies on the unit circle. We can go a bit further and write OL ⊆ Zω
where ω = 1+

√
−d

2
for some positive squarefree d. Then any norm can

be written as a2+db2

4
. In order to have

(1)
a2 + db2

4
= 1,

we must have d ≤ 4 or b = 0. When b = 0, we must have a2 = 4, so
a = ±2, which gives us the obvious units ±1. When d = 2, we cannot
solve (1) except with b = 0 and a = ±1. When d = 3, we have 4
additional solutions

±1±
√
−3

2
.

It is easy to check that that all of these are powers of ξ6, a primitive
6-th root of unity. We’ve shown then that in an imaginary quadratic
the only units are the roots of unity.

What about real quadratics? In this case a unit x+
√
dy (d positive

and squarefree) with x, y ∈ Z is solution to Pell’s equation

x2 − dy2 = 1.

It was known in the 19th century that this has a solution other than
y = 0 and x = ±1 and that there is a fundamental solution u = x+y

√
d

such that any other nontrivial (not ±1) solution v is a power of u.
Furthermore, we know that u is not a root of unity since the only roots

1



2

of unity in R are ±1. For real quadratics, then the free rank of OL∗ is
1.

In general, here is what we’ll do:
As usual, let n be the degree of L over Q and let σ1, . . . , σr be the real
embeddings of L into C with σr+1, σr+2, σn−1, σn the complex embed-
dings. Let’s reorder the complex embeddings so that σr+i+s = σr+i for
odd r < i ≤ s. For b ∈ OL, we define

`(b) = (log |σ1(b)|, . . . , log |σr(b)|, log |σr+1(b)|2, log |σr+2(b)|2,
. . . , |σr+s(b)|2)

= (log |σ1(b)|, . . . , log |σ1(b)|, 2 log |σr+1(b)|, 2 log |σr+2(b)|, . . . , 2|σr+s(b)|)
Since

log |N(b)| = log |σ1(b)|+ · · ·+ log |σ1(b)|
+ 2 log |σr+1(b)|+ 2 log |σr+2(b)|+ · · ·+ 2|σr+s(b)|

and log |N(b)| = 0 if and only if b is a unit, we see that ` sends OL

into the hyperplane in Rs+r consisting of elements with coordinates
(x1, . . . , xr+1) for which

x1 + · · ·+ xn = 0.

We might ask what the kernel of ` is. First, a Lemma.

Lemma 32.2. For any constant C, there are finitely many b ∈ OL

such that |σi(b)| ≤ C for each σi.

Proof. To see this, we use the map we used in the finiteness of the class
group h : L −→ Rn (with the old numbering of the embeddings σ)
defined by

h(b) = (σ1(b), . . . , σr(b),<(σr+1(b)),=(σr+1(b)),

. . . ,<(σr+2(s−1)(b)),=(σr+2(s−1)(b))).

Note that h is injective, since each σi is injective. It is clear that if
|σi(b)| ≤ C, for all i, then the coordinates of h(b) must all be less than
or equal to 1. Hence all h(b) with |σi(b)| ≤ C for each embedding
σi are contained in a bounded region of Rn. Since h(OL) intersects a
bounded region in finitely many points. Hence there are finitely many
b such that |σi(b)| ≤ C for each embedding σi. �

Proposition 32.3. The kernel of ` is finite and is equal to the roots
of unity of L.

Proof. Suppose that `(b) = (0, . . . , 0). Then |σi(b)| = 1 for each em-
bedding σi. From the Lemma above are finitely many such b. Now, if
|σi(b)| = 1 for each embedding σi, then |σi(bn)| = 1 for each embedding
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σi. Thus, the group generated by any such b much be finite. Hence, b
must be a root of unity. Finally, it is easy to see that any root of unity
is integral (we saw this earlier when we studied cyclotomic fields), so
all the roots of unity in L are in OL. �

Next, we will show that `(O∗L) is a sublattice in Rr+s. We define a
sublattice is a subgroup of Rm that has Z-rank equal to the R-dimension
of the vector space it generates.

Proposition 32.4. Let L be a finitely generated subgroup of Rm. Then
L is a sublattice if and only if every bounded region in Rm contains at
most finitely many elements of L.

Proof. Note, we already proved the “only if” part last week during our
proof of the finiteness of the class group.

We will prove the “if” part by induction on m. If m = 1 and L 6= 0
(0 is trivially a sublattice), then Rm = R, and we choose u to be the
smallest positive number in L. Then, for any v ∈ L, we can write
v = tu+ z where t is an integer and 0 ≤ z < u. But, since z = v − tu,
we must have z ∈ L, which means that z = 0 by the minimality of u.
Thus, u must generate L as a Z-module, so the rank of L as a group
is equal to 1.

Now, we do the inductive step. Note that we may assume L gener-
ates Rm as a vector space, since otherwise it is contained in a vector
space of dimension Rm−1 and we are done by the inductive hypothe-
sis. Thus, we can choose R-linearly independent elements v1, . . . , vm of
L. By the inductive hypothesis, if V0 is the R-vector space generated
by v1, . . . , vm−1, then L0 := V0 ∩ L is a sublattice, and is a full lat-
tice in V0. Let w1, . . . wm−1 be a basis for L0 (as a Z-module). Then,
w1, . . . , wm−1, vm is a basis for Rm, so any element of λ ∈ L can be
written as

λ =
m−1∑
i=1

riwi + rmvm

for real numbers ri. Note that if rm = 0, then λ ∈ L0, and we can
choose all of the ri to be integers. Note also that by subtracting off an
appropriate element of L0, we obtain such a λ with all 0 ≤ ri < 1 for
i ≤ (m− 1). There are only finitely many such λ with rm also smaller
than a certain bound (since any bounded region in Rm intersects L
in finitely many points). Thus, there is a nonzero element λ′ with
0 ≤ ri < 1, for i = 1, . . . ,m − 1 and rm > 0 minimal (if rm = 0, then
the other ri must be integers, we recall). I claim that w1, . . . , wm−1, λ

′

must be a Z-basis for L. Indeed, if we pick any element η ∈ L and
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write

η =
m−1∑
i=1

aiwi + amvm

with ai ∈ R. Then by writing

am = trm + z

with t ∈ Z and 0 ≤ z < rm and subtracting

m−1∑
i=1

([ai − rit])wi + tλ′

from η we obtain an element of L written as

m−1∑
i=1

((ai − rit)− [ai − rit])wi + zvm

with 0 ≤ z < am. Thus, we must have z = 0 and

η − tλ′ ∈ LO

and we are done. �

Let’s define some notation now. For a finitely generated abelian
group G we define rk(G) to be the free rank of G. Let’s also define H
to be the hyperplane x1 + . . . xs+r = 0 in Rs+r.

Proposition 32.5. `(O∗L) is a sublattice in H.

Proof. Any bounded region in Rs+r is contained in a set YC consisting
of all (x1, . . . , xr+s) with |xi| ≤ C for C ≥ 0. For b ∈ O∗L, the absolute
value of the i-th coordinate of `(b) is less than or equal to C only if
|σi(b)| ≤ eC for all i. There are only finitely many such b by a Lemma
from last time. �

Corollary 32.6.

rk(O∗L) ≤ (r + s− 1)

Proof. Since the kernel of ` is finite,

rk(O∗L) = rk(`(O∗L)).

From the previous Proposition we know that `(O∗L) is sublattice in a
vector space of dimension s + r − 1, so it must have Z-rank at most
s+ r − 1. �
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We’re going to want use another embedding of OL into an R-vector
space. This embedding, which we denote as h∗ is almost exactly like
the embedding h that we used earlier. It is

h∗(b) = (σ1(b), . . . , σr(b), σr+1(b), . . . , σr+s(b)).

Note that is very similar to the embedding h used earlier. In fact, we
can choose the R-basis x1, . . . , xr, y1, z1, . . . , ys, z1, . . . , zs, where xj is
the element with j-th coordinate equal to 1 and all other coordinates
equal to 0, yj to be the the element with (r + j)-th element equal to 1
and all other coordinates equal to 0, and zj to be the the element with
(r+j)-th element equal to i and all other coordinates equal to 0. Then
h is exactly the same with respect to its usual basis for V as h∗ is with
respect to the basis

x1, . . . , xr, y1, . . . , ys, z1, . . . , zs.

If we give Rr × Cs the volume form associated to this basis, then

Vol(h∗(OL)) = Vol(h(OL)) = 2−s
√

∆(L/K).

In particular, h∗(OL) is a full lattice in Rr × Cs (if it had R-rank less
than n, the volume would be 0).

The advantage of working with h∗ is that ` is that if we denote as pj
projection onto the j-th coordinate (for Rr × Cs). then

pj(`(b)) = log |pj(h∗(b))|

for 1 ≤ j ≤ r and

pj(`(b)) = 2 log |pj(h∗(b))|

for r + 1 ≤ j ≤ r + s.
We have already established that h∗(OL) is a lattice so we should be

able to find elements in it with certain properties. The idea roughly is
this: we want to find a family of units ui in h∗(OL) for which we can
control the ± sign of log |pj(h∗(b))| for various j. We might hope that
these units are linearly independent.

We will work with a region somewhat similar to the region we worked
on when we were doing the finiteness of the class group. We define the
region as follows. Let (t) be an (r+s)-tuple of positive numbers indexed
as (t)i. We define

Z(t) :={(x1, . . . , xs+r) ∈ Rr × Cs | |xi| ≤ (t)i, 1 ≤ i ≤ r

and |xi|2 ≤ (t)i for r + 1 ≤ i ≤ r + s}
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The region Z(t) is just a cross product of regions in R and C, specif-
ically it is

[−(t)1, (t)1]× · · · × [−(t)r, (t)r]

× {(x, y) | x2 + y2 ≤ (t)2r+1} × · · · × {(x, y) | x2 + y2 ≤ (t)r+s}.
Thus,

Vol(Z(t)) = 2rπst1 · · · tr+s


