Math 568 Tom Tucker NOTES FROM CLASS 11/24

Throughout, L is as usual degree n over \mathbb{Q} , $h: L \longrightarrow V$ is the usual embedding, r is the number of real places of L and s = (n-r)/2. Also, N is $N_{L/\mathbb{Q}}$.

Recall from earlier:

Proposition 30.1.

$$\operatorname{Vol}(X_t) = \frac{2^{r-s}\pi^s t^n}{n!}.$$

Proof. The proof of this is in the book on p. 66. The last step in the calculation is integration by parts, which the book neglects to mention. \Box

Lemma 30.2. Let U be any bounded region of V and let \mathcal{L} be a full lattice in V. Then $\mathcal{L} \cap U$ is finite.

Proof. Let w_1, \ldots, w_n be a basis for \mathcal{L} and let x_1, \ldots, x_n be the basis for V that gives the volume form. If M is the matrix given by $Mx_i = w_i$, then for any integers m_i we have

$$|\sum_{i=1}^{n} m_i w_i|^2 = |M(\sum_{i=1}^{n} m_i x_i)|^2 \ge \sum_{i=1}^{n} m_i^2 ||M||_{\inf}^2$$

where $||M||_{inf}$ is the minimum value of |M(y)| for y on the unit sphere centered at the origin (which is nonzero). For any constant C there are finitely many integers m_i such that

$$\sum_{i=1}^{n} m_i^2 \|M\|_{\inf}^2 \le C^2$$

so there are finitely many elements of λ in the sphere of radius C centered at the origin. Any bounded region is contained in such a sphere, so we are done.

Now we can prove the famous Minkowski bound.

Theorem 30.3. Let I be a nonzero fractional ideal of \mathcal{O}_L . Then there exists $a \neq 0$ such that

$$|\operatorname{N}_{L/\mathbb{Q}}(a)| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}_{L/\mathbb{Q}}(I).$$

Proof. We want to choose X_t to which we can apply Minkowski's theorem and produce an element of $X_t \cap h(I)$. Recall that

$$\operatorname{Vol}(h(I)) = \frac{1}{2^s} \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I),$$

so we need t with

$$\frac{2^{r-s}\pi^s t^n}{n!} > 2^n \frac{1}{2^s} \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I),$$

which is equivalent to

$$t > \sqrt[n]{n! \frac{1}{\pi^s} 2^{n-s-r+s} \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I)} = \sqrt[n]{n! \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I)},$$

so let

$$C := \sqrt[n]{n!} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I).$$

Then $\operatorname{Vol}(X_{C+\epsilon}) > \operatorname{Vol}(h(I))$ for any $\epsilon > 0$. It follows that $X_{C+\epsilon} \cap h(I) \neq 0$ by Minkowski's theorem. If

$$X_{C+\epsilon} \cap h(I) = X_C \cap h(I),$$

then $X_C \cap h(I) \neq 0$. Otherwise, let $\epsilon' > 0$ be the smallest number such that

$$X_{C+\epsilon} \cap h(I) \neq X_C \cap h(I).$$

Such a number exists since $X_{C+\epsilon} \cap h(I)$ is finite and any finite nonempty set has a minimal element. Taking $0 < \delta < \epsilon'$, we see that

$$X_C \cap h(I) = X_{C+\delta} \cap h(I) \neq 0,$$

so there is a nonzero element $a \in X_C \cap h(I)$. From earlier work, we see that

$$N(a) \le (C/n)^n = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \operatorname{N}(I).$$

Let's do an easy lemma.

Lemma 30.4. Let I be a fractional ideal of a Dedekind domain A and let $a \neq 0$ be in I. Then $aI^{-1} \subseteq A$.

Proof. Since $Aa \subseteq I$, we have

$$I^{-1}Aa \subseteq II^{-1} = A.$$

Theorem 30.5. Let $I \subset \mathcal{O}_L$ be any fractional ideal of \mathcal{O}_L . Then there exists an ideal $J \subset \mathcal{O}_L$ in the same ideal class as I such that

$$|\operatorname{N}_{L/\mathbb{Q}}(J))| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})}.$$

Proof. Applying the previous theorem to I^{-1} , we find that there is an element $a \in I^{-1}$ such that

$$|\mathcal{N}_{L/\mathbb{Q}}(a)| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} \mathcal{N}(I)^{-1}.$$

Let J = aI. Since $a \in I^{-1}$, we see that

$$aI = a(I^{-1})^{-1} \subset \mathcal{O}_L.$$

We also have

$$N(aI) \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})} N(I)^{-1} N(I) = \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})},$$

so we are done.

so we are done.

Example 30.6. $|\operatorname{Cl}(\mathbb{Z}[\frac{\sqrt{-43}+1}{2}])| = 1$. Plugging into the Minkowski bound, we get

$$(1/2)(4/\pi)\sqrt{43} \le (1/2)(4/3)7 < 5,$$

so we only need to look at 2 and 3. The minimal polynomial for

$$\omega = \frac{\sqrt{-43} + 1}{2}$$

is $x^2 - x + 11$. Over 2, we get:

$$x^2 - x + 11 \equiv x^2 - x + 1 \pmod{2}$$

which is irreducible, so $2\mathbb{Z}[\omega]$ is prime. Over 3, we get

$$x^{2} - x + 11 \equiv x^{2} - x + 2 \pmod{3}$$

which has no roots (try 0,1,2) in $\mathbb{Z}/3\mathbb{Z}$, so is irreducible. Thus, $3\mathbb{Z}[\omega]$ is prime and principal. Now, we're done.

Question: Are there any nontrivial extensions of \mathbb{Q} that don't ramify anywhere? Since $|\Delta(L/\mathbb{Q})|$ is a positive integer and the only positive integer that isn't divisible by any primes is 1, this is the same as asking whether or not there are any extensions with $|\Delta(L/\mathbb{Q})| = 1$. Now, recall that we know that every nonzero ideal $I \subseteq \mathcal{O}_L$ has norm equal to at least 1. Looking at the Minkowski bound, we know that any ideal class contains an ideal with norm at most

$$\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(L/\mathbb{Q})} > 1,$$

which means that

$$\sqrt{\Delta(L/\mathbb{Q})} > \frac{n^n}{n!} \left(\frac{\pi}{4}\right)^s.$$

Since 2s + r = n for some integer $r \ge 0$, we know that $s \le \lfloor n/2 \rfloor$ (where $\lfloor \cdot \rfloor$ is the greatest integer function). Now, we can write

$$\frac{n^n}{n!} \left(\frac{\pi}{4}\right)^s > \frac{n^{[n/2]}}{[n/2]!} (3/4)^{[n/2]} > 2^{[n/2]} (3/4)^{[n/2]} > 1,$$

for $n \geq 2$, so for $L \neq \mathbb{Q}$, we have

$$\sqrt{\Delta(L/\mathbb{Q})} > 1$$

so there is some p dividing $\sqrt{\Delta(L/\mathbb{Q})}$, so L ramifies at some prime. On the other hand, many quadratic fields do have unramified extensions. In fact, $\mathbb{Q}[\sqrt{d}]$ for square-free d has an unramified extension whenever d is composite (see homework later).