Math 568 Tom Tucker

NOTES FROM CLASS 11/19
Theorem 31.1. Let $I \subset \mathcal{O}_{L}$ be any fractional ideal of \mathcal{O}_{L}. Then there exists an ideal $J \subset \mathcal{O}_{L}$ in the same ideal class as I such that

$$
\left.\mid \mathrm{N}_{L / \mathbb{Q}}(J)\right) \left\lvert\, \leq \frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)}\right.
$$

Corollary 31.2. $\left|\mathrm{Cl}\left(\mathcal{O}_{L}\right)\right|$ is finite.
Proof. There are finitely many ideals in \mathcal{O}_{L} of bounded norm.
Example 31.3. $|\mathrm{Cl}(\mathbb{Z}[\sqrt{-13}])|=2$. We check the Minkowski bound and find it to be smaller than 5:

$$
(1 / 2)(4 / \pi) 2 \sqrt{13}<5
$$

So we only need to check at 2 and 3 . Let's see what happens at 2 :

$$
x^{2}+13 \equiv x^{2}+1 \quad(\bmod 2) \equiv(x+1)^{2} \quad(\bmod 2)
$$

Let $\mathcal{P}=(\sqrt{-13}+1,2)$. I claim it isn't principal. To start with, we see that 2 is irreducible in $\mathbb{Z}[\sqrt{-13}]$. If it weren't irreducible, we could write $x y=2$ with x, y not units. Let N denote $\mathrm{N}_{\mathbb{Q}(\sqrt{-13}) / \mathbb{Q}}$. This would mean that $\mathrm{N}(x) \mathrm{N}(y)=\mathrm{N}(2)=4$. Since x and y are not units, we cannot have $\mathrm{N}(x)$ or $\mathrm{N}(y)$ equal to 2 . But there are no a and b with $a^{2}+13 b^{2}=2$, so this is impossible. Thus, the only possible generator for the ideal \mathcal{P} is 2 . But $2 \nmid(\sqrt{-13}+1)$, so 2 cannot generate this ideal. In fact, we already know that $\mathcal{P}^{2}=2$, so 2 cannot generate this ideal. Hence $[\mathcal{P}] \neq 1$, where $[\mathcal{P}]$ is the ideal class of \mathcal{P}. Since $\mathcal{P}^{2}=(2)$, we know that $[\mathcal{P}]^{2}=1$.

Let's look over 3 now:

$$
x^{2}+13 \equiv x^{2}+1 \quad(\bmod 3)
$$

which is irreducible, so $3 \mathbb{Z}[\sqrt{-13}]$ is the only prime lying over 3 . Thus, $\mathrm{Cl}(\mathbb{Z}[\sqrt{-13}])$ is generated by $[\mathcal{P}]$ above and thus has order 2 .
Example 31.4. $\left|\operatorname{Cl}\left(\mathbb{Z}\left[\frac{\sqrt{13}+1}{2}\right]\right)\right|=1$. Plugging into Minkowski, we get

$$
(1 / 2) \sqrt{13}<2
$$

so we must have class number 1 .

