Math 568 Tom Tucker NOTES FROM CLASS 11/19

Theorem 31.1. Let $I \subset \mathcal{O}_L$ be any fractional ideal of \mathcal{O}_L . Then there exists an ideal $J \subset \mathcal{O}_L$ in the same ideal class as I such that

$$|\mathrm{N}_{L/\mathbb{Q}}(J))| \leq \frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{\Delta(\mathcal{O}_L/\mathbb{Z})}.$$

Corollary 31.2. $|\operatorname{Cl}(\mathcal{O}_L)|$ is finite.

Proof. There are finitely many ideals in \mathcal{O}_L of bounded norm.

Example 31.3. $|\operatorname{Cl}(\mathbb{Z}[\sqrt{-13}])| = 2$. We check the Minkowski bound and find it to be smaller than 5:

$$(1/2)(4/\pi)2\sqrt{13} < 5.$$

So we only need to check at 2 and 3. Let's see what happens at 2:

$$x^{2} + 13 \equiv x^{2} + 1 \pmod{2} \equiv (x+1)^{2} \pmod{2}.$$

Let $\mathcal{P} = (\sqrt{-13} + 1, 2)$. I claim it isn't principal. To start with, we see that 2 is irreducible in $\mathbb{Z}[\sqrt{-13}]$. If it weren't irreducible, we could write xy = 2 with x, y not units. Let N denote $N_{\mathbb{Q}(\sqrt{-13})/\mathbb{Q}}$. This would mean that N(x)N(y) = N(2) = 4. Since x and y are not units, we cannot have N(x) or N(y) equal to 2. But there are no a and b with $a^2 + 13b^2 = 2$, so this is impossible. Thus, the only possible generator for the ideal \mathcal{P} is 2. But $2 \nmid (\sqrt{-13} + 1)$, so 2 cannot generate this ideal. In fact, we already know that $\mathcal{P}^2 = 2$, so 2 cannot generate this ideal. Hence $[\mathcal{P}] \neq 1$, where $[\mathcal{P}]$ is the ideal class of \mathcal{P} . Since $\mathcal{P}^2 = (2)$, we know that $[\mathcal{P}]^2 = 1$.

Let's look over 3 now:

$$x^2 + 13 \equiv x^2 + 1 \pmod{3}$$

which is irreducible, so $3\mathbb{Z}[\sqrt{-13}]$ is the only prime lying over 3. Thus, $\operatorname{Cl}(\mathbb{Z}[\sqrt{-13}])$ is generated by $[\mathcal{P}]$ above and thus has order 2.

Example 31.4. $|\operatorname{Cl}(\mathbb{Z}[\frac{\sqrt{13}+1}{2}])| = 1$. Plugging into Minkowski, we get $(1/2)\sqrt{13} < 2$

so we must have class number 1.