> Math 568 Tom Tucker
> NOTES FROM CLASS 11/12

Recall from last time that when R is Dedekind, all fractional ideals are invertible (and thus form a group) so we have an exact sequence

$$
0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Fr}(R) \longrightarrow \mathrm{Cl}(R) \longrightarrow 0
$$

We call the quotient $\mathrm{Cl}(R)$ above the class group of R. When R is the integral closure \mathcal{O}_{L} of \mathbb{Z} in some number field L, we often write $\mathrm{Cl}(L)$ for $\operatorname{Cl}\left(\mathcal{O}_{L}\right)$. We also write $\Delta(L)$ for $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. We want to prove the following.

Theorem 18.1. Let L be a number field. Then $\mathrm{Cl}(L)$ is finite.
Recall the main idea... If we have a number field L of degree n over \mathbb{Q}, then we have n different embeddings of L into \mathbb{C}. They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_{L} in $\operatorname{Gal}(M / \mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^{n}. What is a full lattice? (Last time I only introduced this informally.)

Definition 18.2. A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module whose rank as a \mathbb{Z}-module is the equal to the dimension of the \mathbb{R}-vector space generated by \mathcal{L}. A full lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module of rank n that generates \mathbb{R}^{n} as a \mathbb{R}-vector space.
Example 18.3. (1) $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ is not a full lattice of \mathbb{R}^{2} under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R}-vector space of dimension 1 .
(2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^{2} where \mathbb{R}^{2} is \mathbb{C} considered as an \mathbb{R}-vector space with basis $1, i$ over \mathbb{R}.

On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ into \mathbb{R}^{2} in such a way that it is a full lattice in the following way. Let $\phi: 1 \mapsto(1,1)$ and $\phi: \theta: \longrightarrow(\sqrt{3},-\sqrt{3})$. In this case, we must generated \mathbb{R}^{2} as an \mathbb{R}^{2} vector space since $(1,1)$ and $(\sqrt{3},-\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C}. There are the real ones and the complex ones. An embedding $\sigma: L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)}=\sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X] / f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X] / f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)$ where the f_{i} have coefficients in \mathbb{R}, are irreducible over \mathbb{R}, and $f_{1} \ldots f_{m}=g$
(note that the f_{i} are distinct since L is separable over \mathbb{Q}). We also know that each f_{i} is of degree 1 or 2 . When f_{i} has degree 1 , then $\mathbb{R}[X] / f_{i}(X)$ is isomorphic to \mathbb{R} and when f_{i} has degree 2 , then $\mathbb{R}[X] / f_{i}(X)$ is isomorphic to \mathbb{C}. Since \mathbb{Q} has a natural embedding into \mathbb{R}, we obtain a natural embedding of

$$
j: L \cong \mathbb{Q}[X] / f(X) \longrightarrow \bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

Composing j with projection onto the i-th factor of

$$
\bigoplus_{i=1}^{m} \mathbb{R}[X] / f_{i}(X)
$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when $\operatorname{deg} f_{i}=$ 2 and $\mathbb{R}[X] / f_{i}(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_{1}, \ldots, \sigma_{n}(n=[L: \mathbb{Q}])$ in the following way. We let $\sigma_{1}, \ldots, \sigma_{s}$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i=r+1, r+3, \ldots$, we let σ_{i} be a complex embedding and let $\sigma_{i+1}=\overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have $r+2 s=n$.

Now, we can embed \mathcal{O}_{L} into \mathbb{R}^{n} by letting

$$
\begin{align*}
& h(y)=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \left.\Re \Re\left(\sigma_{r+1}(y)\right), \Im\left(\sigma_{r+1}(y)\right), \ldots, \Re\left(\sigma_{r+2(s-1)}(y)\right), \Im\left(\sigma_{r+2(s-1)}(y)\right)\right) \\
& \quad=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \quad \frac{\sigma_{r+1}(y)+\sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y)-\sigma_{r+2}(y)}{2 i}, \ldots, \tag{1}\\
& \left.\quad \frac{\sigma_{r+2(s-1)}(y)+\sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y)-\sigma_{r+2(s-1)+1}(y)}{2 i}\right) .
\end{align*}
$$

Let us also denote as h_{i} the map $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}$ given by composing h with projection p_{i} onto the i-th coordinate of \mathbb{R}^{n}.

We will continue to use h and h_{i} as defined above. We will also continue to let s and r be as above and to let $n=r+2 s$ be the degree $[L: \mathbb{Q}]$.

Proposition 18.4. Let $\left\{w_{1} \ldots, w_{m}\right\}$ be a basis for \mathcal{O}_{L} over \mathbb{Z}. We have

$$
\left(\operatorname{det}\left[h_{i}\left(w_{j}\right)\right]\right)^{2}=\frac{1}{(-2 i)^{2 s}}\left|\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)\right|
$$

Proof. From the HW just assigned (problem \#2), we know that

$$
\left(\operatorname{det}\left[\sigma_{i}\left(w_{j}\right)\right]\right)^{2}=\left|\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)\right| .
$$

We also know from (1) that h_{i} differs from σ_{i} (when the σ 's are ordered as in that equation) only for σ_{i} complex and we can obtain h_{i} for even $i>r$ by adding up two σ_{i} and dividing by 2 . We can then get the odd i-th rows by subtracting the $i-1$ row from the i-th row and diving by $-i$. I will put this on the board.

Note that we can actually define $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$ as a number (positive or negative) not just an ideal. I will say more about this next time.

Corollary 18.5. The image $h\left(\mathcal{O}_{L}\right)$ in \mathbb{R}^{n} is a full lattice.
Proof. Since $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right) \neq 0$, the determinant $\operatorname{det}\left[h_{i}\left(w_{j}\right)\right] \neq 0$, so the $h_{i}\left(w_{j}\right)$ are linearly independent over \mathbb{R}. Hence they generate \mathbb{R}^{n} as an \mathbb{R}-vector space and \mathcal{O}_{L} is a full lattice.

In the book the following characterization of a lattice is proven. We will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup $\mathcal{L} \subset \mathbb{R}^{n}$ of \mathbb{Z}-rank n is a full lattice if and only if every sphere in \mathbb{R}^{n} contains only finitely many elements of \mathcal{L}.

We will not need this characterization.
$* * * * * *$ Fundamental parallelepipeds. Let \mathcal{L} be a full lattice in \mathbb{R}^{n} and let w_{1}, \ldots, w_{n} be a basis for \mathcal{L} over \mathbb{Z}. We call the set

$$
\mathcal{T}=\left\{r_{1} w_{1}+\cdots+r_{n} w_{n} \mid 0 \leq r_{i}<1, r_{i} \in \mathbb{R}\right\}
$$

the fundamental parallelepiped for the basis w_{1}, \ldots, w_{n}.
Lemma 18.7. Let \mathcal{L} be a full lattice in \mathbb{R}^{n} and let w_{1}, \ldots, w_{n} be a basis for \mathcal{L} over \mathbb{Z} with fundamental parallelepipeds \mathcal{T}. Then every element $v \in \mathbb{R}^{n}$ can be written as $t+\lambda$ for a unique $t \in \mathcal{T}$ and $\lambda \in \mathcal{L}$. In particular, the sets $\lambda+\mathcal{T}$ are disjoint and cover all of \mathbb{R}^{n}.
Proof. Let $v \in V$. Write $v=\sum_{i=1}^{m} s_{i} w_{i}$ (uniquely). Then each s_{i} can be written uniquely as an integer plus a real number less than 1 , that is as

$$
s_{i}=\left[s_{i}\right]+r_{i}
$$

where the brackets are the greatest integer function and $r_{i}<1$.
Now, we want to work with volumes. A volume on \mathbb{R}^{n} comes from a choice of orthonormal basis x_{1}, \ldots, x_{n}. Let V be the vector space \mathbb{R}^{n}
equipped with the orthonormal basis x_{1}, \ldots, x_{n}. For a full lattice \mathcal{L} with basis w_{1}, \ldots, w_{n}, we can write

$$
w_{i}=\sum_{j=1}^{n} s_{i j} x_{j} .
$$

It follows from multivariable calculus that the volume of the parallelepipeds \mathcal{T} for the w_{i} is

$$
\int \ldots \int_{\mathcal{T}} d x_{1} \ldots d x_{n}=\int \ldots \int_{0 \leq x_{i}<1}\left|\operatorname{det}\left[s_{i j}\right]\right| d x_{1} \ldots d x_{n}=\left|\operatorname{det}\left[s_{i j}\right]\right| .
$$

We call the quantity $\left|\operatorname{det}\left[s_{i j}\right]\right|$ the volume of \mathcal{L}. It does not depend on our choice of basis since any two choice of bases differ by a change of basis matrix with determinant ± 1.

Note that there is a choice of basis implicit in our map $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}^{n}$. This basis comes from the coordinates with which we have described our map. We will call this basis $\left\{x_{1}, \ldots, x_{n}\right\}$ and call \mathbb{R}^{n} equipped with this volume form V.

Definition 18.8. For a full lattice \mathcal{L} in \mathbb{R}^{n}, we define $\operatorname{Vol}(\mathcal{L})$ to the absolute value of the determinant of the matrix obtained by lining up the bases elements for \mathcal{L} as vectors. (Observe that this does not depend on our choice of basis).
Theorem 18.9. The volume of $h\left(\mathcal{O}_{L}\right)$ in V is

$$
\frac{1}{2^{s}} \sqrt{\left|\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)\right|}
$$

Proof. This follows immediately from Proposition 18.4, since the matrix we have written is with respect to the basis x_{i} above.

Now, let I be anideal in \mathcal{L}. The ideal I is torsion-free as \mathbb{Z}-module. We can calculate the volume of $h(I)$ in terms of the degree of L, the discriminant $\left|\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)\right|$, and $|\mathrm{N}(I)|$.

Theorem 18.10. We have $\operatorname{Vol}(h(I))=|\mathrm{N}(I)|\left|\operatorname{Vol}\left(h\left(\mathcal{O}_{L}\right)\right)\right|$.
Proof. Write $I=\mathcal{Q}_{1}^{e_{1}} \ldots \mathcal{Q}_{m}^{e_{m}}$ and let f_{i} be the degree $\left[\mathcal{O}_{L} / \mathcal{Q}_{i}: \mathbb{Z} / p_{i} \mathbb{Z}\right]$ where $p_{i}=\mathcal{Q}_{i} \cap \mathbb{Z}$. Since $N\left(\mathcal{Q}_{i}\right)=p_{i}^{f_{i}}=\left|\mathcal{O}_{L} / \mathcal{Q}_{i}\right|$ and $\mathcal{O}_{L} / \mathcal{Q}_{i}^{e_{i}}$ is a e_{i}-dimensional vector space over $\mathcal{O}_{L} / \mathcal{Q}_{i}$, we we see by the Chinese Remainder Theorem that $N(I)=\left|\mathcal{O}_{L} / I\right|$. Now, we can choose a basis $\left\{w_{1}, \ldots, w_{n}\right\}$ for \mathcal{O}_{L} such that $\left\{a_{1} w_{1}, \ldots, a_{n} w_{n}\right\}$ is a basis for I for some positive integers a_{1}, \ldots, a_{n} (this a standard fact about free abelian groups that I will have you prove on your homework later). Clearly, we have

$$
\begin{equation*}
\left|\operatorname{det}\left[\sigma_{i}\left(a_{j} w_{j}\right)\right]\right|=\left|\left(a_{1} \cdots a_{n}\right)\right| \operatorname{Vol}\left(h\left(\mathcal{O}_{L}\right)\right)=N(I) \operatorname{Vol}\left(h\left(\mathcal{O}_{L}\right)\right) \tag{2}
\end{equation*}
$$

