
Math 568 Tom Tucker
NOTES FROM CLASS 11/12

Recall from last time that when R is Dedekind, all fractional ideals
are invertible (and thus form a group) so we have an exact sequence

0 −→ Pri(R) −→ Fr(R) −→ Cl(R) −→ 0.

We call the quotient Cl(R) above the class group of R. When R is the
integral closure OL of Z in some number field L, we often write Cl(L)
for Cl(OL). We also write ∆(L) for ∆(OL/Z). We want to prove the
following.

Theorem 18.1. Let L be a number field. Then Cl(L) is finite.

Recall the main idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L −→ C and then conjugating this
embedding by elements in the cosets of HL in Gal(M/Q) for M some
Galois extension of Q containing L. We’ll use these to make B a full
lattice in Rn. What is a full lattice? (Last time I only introduced this
informally.)

Definition 18.2. A lattice L ⊂ Rn is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice L ⊂ Rn is a free Z-module of rank n that generates
Rn as a R-vector space.

Example 18.3. (1) Z[θ] where θ2 = 3 is not a full lattice of R2

under the embedding 1 7→ 1 and θ 7→
√

3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R2 where R2 is C considered as an R-vector
space with basis 1, i over R.

On the other hand, we can send Z[θ] where θ2 = 3 into R2 in such
a way that it is a full lattice in the following way. Let φ : 1 7→ (1, 1)
and φ : θ :−→ (

√
3,−
√

3). In this case, we must generated R2 as an
R2 vector space since (1, 1) and (

√
3,−
√

3) are linearly independent.
There are two different types of embeddings of L into C. There are

the real ones and the complex ones. An embedding σ : L −→ C is real if
σ(y) = σ(y) for every y ∈ L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L ∼= Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) ∼=

⊕m
i=1R[X]/fi(X) where

the fi have coefficients in R, are irreducible over R, and f1 . . . fm = g
1



2

(note that the fi are distinct since L is separable over Q). We also know
that each fi is of degree 1 or 2. When fi has degree 1, then R[X]/fi(X)
is isomorphic to R and when fi has degree 2, then R[X]/fi(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j : L ∼= Q[X]/f(X) −→
m⊕
i=1

R[X]/fi(X).

Composing j with projection onto the i-th factor of

m⊕
i=1

R[X]/fi(X)

then gives a map from L −→ R or L −→ C. In fact, when deg fi =
2 and R[X]/fi(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σs be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi+1. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed OL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : OL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].

Proposition 18.4. Let {w1 . . . , wm} be a basis for OL over Z. We
have

(det[hi(wj)])
2 =

1

(−2i)2s
|∆(OL/Z)|.
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Proof. From the HW just assigned (problem #2), we know that

(det[σi(wj)])
2 = |∆(OL/Z)|.

We also know from (1) that hi differs from σi (when the σ’s are ordered
as in that equation) only for σi complex and we can obtain hi for even
i > r by adding up two σi and dividing by 2. We can then get the odd
i-th rows by subtracting the i− 1 row from the i-th row and diving by
−i. I will put this on the board. �

Note that we can actually define ∆(OL/Z) as a number (positive or
negative) not just an ideal. I will say more about this next time.

Corollary 18.5. The image h(OL) in Rn is a full lattice.

Proof. Since ∆(OL/Z) 6= 0, the determinant det[hi(wj)] 6= 0, so the
hi(wj) are linearly independent over R. Hence they generate Rn as an
R-vector space and OL is a full lattice. �

In the book the following characterization of a lattice is proven. We
will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup L ⊂ Rn of Z-rank
n is a full lattice if and only if every sphere in Rn contains only finitely
many elements of L.

We will not need this characterization.
****** Fundamental parallelepipeds. Let L be a full lattice in Rn

and let w1, . . . , wn be a basis for L over Z. We call the set

T = {r1w1 + · · ·+ rnwn | 0 ≤ ri < 1, ri ∈ R}
the fundamental parallelepiped for the basis w1, . . . , wn.

Lemma 18.7. Let L be a full lattice in Rn and let w1, . . . , wn be a basis
for L over Z with fundamental parallelepipeds T . Then every element
v ∈ Rn can be written as t + λ for a unique t ∈ T and λ ∈ L. In
particular, the sets λ+ T are disjoint and cover all of Rn.

Proof. Let v ∈ V . Write v =
m∑
i=1

siwi (uniquely). Then each si can be

written uniquely as an integer plus a real number less than 1, that is
as

si = [si] + ri

where the brackets are the greatest integer function and ri < 1. �

Now, we want to work with volumes. A volume on Rn comes from a
choice of orthonormal basis x1, . . . , xn. Let V be the vector space Rn
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equipped with the orthonormal basis x1, . . . , xn. For a full lattice L
with basis w1, . . . , wn, we can write

wi =
n∑

j=1

sijxj.

It follows from multivariable calculus that the volume of the paral-
lelepipeds T for the wi is∫

. . .

∫
T
dx1 . . . dxn =

∫
. . .

∫
0≤xi<1

| det[sij]|dx1 . . . dxn = | det[sij]|.

We call the quantity | det[sij]| the volume of L. It does not depend on
our choice of basis since any two choice of bases differ by a change of
basis matrix with determinant ±1.

Note that there is a choice of basis implicit in our map h : OL −→ Rn.
This basis comes from the coordinates with which we have described
our map. We will call this basis {x1, . . . , xn} and call Rn equipped with
this volume form V .

Definition 18.8. For a full lattice L in Rn, we define Vol(L) to the
absolute value of the determinant of the matrix obtained by lining up
the bases elements for L as vectors. (Observe that this does not depend
on our choice of basis).

Theorem 18.9. The volume of h(OL) in V is

1

2s

√
|∆(OL/Z)|.

Proof. This follows immediately from Proposition 18.4, since the ma-
trix we have written is with respect to the basis xi above. �

Now, let I be anideal in L. The ideal I is torsion-free as Z-module.
We can calculate the volume of h(I) in terms of the degree of L, the
discriminant |∆(OL/Z)|, and |N(I)|.
Theorem 18.10. We have Vol(h(I)) = |N(I)||Vol(h(OL))|.
Proof. Write I = Qe1

1 . . .Qem
m and let fi be the degree [OL/Qi : Z/piZ]

where pi = Qi ∩ Z. Since N(Qi) = pfii = |OL/Qi| and OL/Qei
i is

a ei-dimensional vector space over OL/Qi, we we see by the Chinese
Remainder Theorem that N(I) = |OL/I|. Now, we can choose a basis
{w1, . . . , wn} for OL such that {a1w1, . . . , anwn} is a basis for I for
some positive integers a1, . . . , an (this a standard fact about free abelian
groups that I will have you prove on your homework later). Clearly,
we have

(2) | det[σi(ajwj)]| = |(a1 · · · an)|Vol(h(OL)) = N(I) Vol(h(OL))
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