Math 568 Tom Tucker
NOTES FROM CLASS 11/12

Recall from last time that when R is Dedekind, all fractional ideals
are invertible (and thus form a group) so we have an exact sequence

0 — Pri(R) — Fr(R) — CI(R) — 0.

We call the quotient Cl(R) above the class group of R. When R is the
integral closure Op, of Z in some number field L, we often write C1(L)
for C1(Of). We also write A(L) for A(Or/Z). We want to prove the
following.

Theorem 18.1. Let L be a number field. Then ClL(L) is finite.

Recall the main idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L — C and then conjugating this
embedding by elements in the cosets of Hy, in Gal(M/Q) for M some
Galois extension of QQ containing L. We’ll use these to make B a full
lattice in R™. What is a full lattice? (Last time I only introduced this
informally.)

Definition 18.2. A lattice £ C R" is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice £L C R" is a free Z-module of rank n that generates
R™ as a R-vector space.

Example 18.3. (1) Z[f] where 6> = 3 is not a full lattice of R?
under the embedding 1 — 1 and 6 — /3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R* where R? is C considered as an R-vector
space with basis 1,7 over R.

On the other hand, we can send Z[f] where §* = 3 into R? in such
a way that it is a full lattice in the following way. Let ¢ : 1 — (1,1)
and ¢ : 0 :— (V/3,—/3). In this case, we must generated R? as an
R? vector space since (1,1) and (v/3, —v/3) are linearly independent.

There are two different types of embeddings of L into C. There are
the real ones and the complex ones. An embedding o : L — Cisreal if
o(y) = o(y) for every y € L (the bar here denotes complex conjugation)
and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write L = Q[X]/f(X) for
some monic irreducible polynomial L with integer coefficients. Then by
the Chinese remainder theorem R[X]/f(X) = @, R[X]/ f:(X) where

the f; have coefficients in R, are irreducible over R, and f;...f, =g
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(note that the f; are distinct since L is separable over Q). We also know
that each f; is of degree 1 or 2. When f; has degree 1, then R[X]/f;(X)
is isomorphic to R and when f; has degree 2, then R[X]/f;(X) is iso-
morphic to C. Since Q has a natural embedding into R, we obtain a
natural embedding of

j: L= Q[X] —>@R 1/ fi(X

Composing j with projection onto the i-th factor of

GBR I/ fi(X

then gives a map from L — R or L. — C. In fact, when deg f; =
2 and R[X]/fi(X) is C we get two embeddings by composing with
conjugation. The image of L is the same for these two embeddings, so
we will want to link these two in some way...

Let’s order the embeddings o1, ...,0, (n = [L: Q]) in the following
way. We let gq,...,0, be real embeddings. The remaining embeddings
come in pairs as explained above, so for i =r+ 1,7+ 3,..., we let o;
be a complex embedding and let 0;,1 = 0,71. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed Of, into R" by letting

h<y) = (Ul(y)7 e 70-7'<y)7

%(UT-H (y))> %(UT-H (y))> Sy gce(07“+2(871)(y))7 %(07%2(871)(:9)))

- ((71(1/)7 cee 70T<y)7

0ri1(y) + 0ri2(y) 0ri1(y) — ori2(y)

2 ’ 21 Y
0r+2(371)(y) + 0r+2(571)(y) 0r+2(571)(y) - 0r+2(571)+1(y))
2 ’ 21 ’

Let us also denote as h; the map h : Op — R given by composing h
with projection p; onto the i-th coordinate of R™.

We will continue to use h and h; as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree

L Q]

Proposition 18.4. Let {w;...,wy,} be a basis for O over Z. We
have

(1)

1

(det[hi(w))])* = 2>

|A(OL/Z)].



Proof. From the HW just assigned (problem #2), we know that
(det[os(w))])* = |A(OL/Z)].

We also know from (1) that h; differs from o; (when the o’s are ordered
as in that equation) only for o; complex and we can obtain h; for even
1 > r by adding up two o; and dividing by 2. We can then get the odd
1-th rows by subtracting the ¢+ — 1 row from the ¢-th row and diving by
—i. I will put this on the board. U

Note that we can actually define A(O/Z) as a number (positive or
negative) not just an ideal. I will say more about this next time.

Corollary 18.5. The image h(Op) in R™ is a full lattice.

Proof. Since A(OL/Z) # 0, the determinant det[h;(w;)] # 0, so the
hi(w;) are linearly mdependent over R. Hence they generate R” as an
R-vector space and Oy, is a full lattice. O

In the book the following characterization of a lattice is proven. We
will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup £ C R™ of Z-rank
n is a full lattice if and only if every sphere in R™ contains only finitely
many elements of L.

We will not need this characterization.
kRt Fundamental parallelepipeds. Let £ be a full lattice in R™
and let wy,...,w, be a basis for £ over Z. We call the set

T={rnw+--+nrw, | 0<r, <1, r, e R}
the fundamental parallelepiped for the basis wy, ..., w,.

Lemma 18.7. Let L be a full lattice in R™ and let wy, . .., w, be a basis
for L over Z, with fundamental parallelepipeds T. Then every element
v € R™ can be written as t + X for a unique t € T and A € L. In
particular, the sets A+ T are disjoint and cover all of R™.

Proof. Let v € V. Write v = Z s;w; (uniquely). Then each s; can be

written uniquely as an mteger plus a real number less than 1, that is
as

S; = [Sl] -+ r;
where the brackets are the greatest integer function and r; < 1. U

Now, we want to work with volumes. A volume on R™ comes from a
choice of orthonormal basis xq,...,x,. Let V be the vector space R"
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equipped with the orthonormal basis z1,...,x,. For a full lattice £

with basis wq, ..., w,, we can write
n
w; = E Sij Ly
j=1

It follows from multivariable calculus that the volume of the paral-
lelepipeds T for the w; is

/.../dxl...da:n:/.../ | detfsi][dzs ... dan = | det[ss].
T 0<z;<1

We call the quantity | det[s;;]| the volume of £. It does not depend on
our choice of basis since any two choice of bases differ by a change of
basis matrix with determinant +1.

Note that there is a choice of basis implicit in our map h : O — R™.
This basis comes from the coordinates with which we have described
our map. We will call this basis {z1, ..., z,} and call R" equipped with
this volume form V.

Definition 18.8. For a full lattice £ in R", we define Vol(£) to the
absolute value of the determinant of the matrix obtained by lining up
the bases elements for £ as vectors. (Observe that this does not depend
on our choice of basis).

Theorem 18.9. The volume of h(Op) in'V is

S VIAOLD)]

Proof. This follows immediately from Proposition 18.4, since the ma-
trix we have written is with respect to the basis x; above. 0

Now, let I be anideal in £. The ideal I is torsion-free as Z-module.
We can calculate the volume of h(I) in terms of the degree of L, the
discriminant |A(OL/Z)|, and | N(I)].

Theorem 18.10. We have Vol(h(I)) = |N(I)|| Vol(h(Op))].

Proof. Write I = Qf* ... Q% and let f; be the degree [OL/Q; : Z/p;Z]
where p; = Q; NZ. Since N(Q;) = pf = 10./Q;| and OL/Q;" is
a e;-dimensional vector space over Op/Q;, we we see by the Chinese
Remainder Theorem that N(/) = |Op/I|. Now, we can choose a basis
{wy,...,w,} for Op such that {ajwy,...,a,w,} is a basis for I for
some positive integers ay, . . ., a, (this a standard fact about free abelian
groups that I will have you prove on your homework later). Clearly,
we have

(2)  |detloi(ajw;)]| = [(a1---an)| Vol(h(OL)) = N(I) Vol(h(OL))






