Math 568 Tom Tucker NOTES FROM CLASS 11/12

Recall from last time that when R is Dedekind, all fractional ideals are invertible (and thus form a group) so we have an exact sequence

$$0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Fr}(R) \longrightarrow \operatorname{Cl}(R) \longrightarrow 0.$$

We call the quotient $\operatorname{Cl}(R)$ above the class group of R. When R is the integral closure \mathcal{O}_L of \mathbb{Z} in some number field L, we often write $\operatorname{Cl}(L)$ for $\operatorname{Cl}(\mathcal{O}_L)$. We also write $\Delta(L)$ for $\Delta(\mathcal{O}_L/\mathbb{Z})$. We want to prove the following.

Theorem 18.1. Let L be a number field. Then Cl(L) is finite.

Recall the main idea... If we have a number field L of degree n over \mathbb{Q} , then we have n different embeddings of L into \mathbb{C} . They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_L in $\operatorname{Gal}(M/\mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^n . What is a full lattice? (Last time I only introduced this informally.)

Definition 18.2. A lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module whose rank as a \mathbb{Z} -module is the equal to the dimension of the \mathbb{R} -vector space generated by \mathcal{L} . A full lattice $\mathcal{L} \subset \mathbb{R}^n$ is a free \mathbb{Z} -module of rank n that generates \mathbb{R}^n as a \mathbb{R} -vector space.

- **Example 18.3.** (1) $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ is *not* a full lattice of \mathbb{R}^2 under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R} -vector space of dimension 1.
 - (2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^2 where \mathbb{R}^2 is \mathbb{C} considered as an \mathbb{R} -vector space with basis 1, i over \mathbb{R} .

On the other hand, we can send $\mathbb{Z}[\theta]$ where $\theta^2 = 3$ into \mathbb{R}^2 in such a way that it is a full lattice in the following way. Let $\phi : 1 \mapsto (1,1)$ and $\phi : \theta :\longrightarrow (\sqrt{3}, -\sqrt{3})$. In this case, we must generated \mathbb{R}^2 as an \mathbb{R}^2 vector space since (1,1) and $(\sqrt{3}, -\sqrt{3})$ are linearly independent.

There are two different types of embeddings of L into \mathbb{C} . There are the real ones and the complex ones. An embedding $\sigma : L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)} = \sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise. How can we tell which is which?

Suppose we have a number field L. We can write $L \cong \mathbb{Q}[X]/f(X)$ for some monic irreducible polynomial L with integer coefficients. Then by the Chinese remainder theorem $\mathbb{R}[X]/f(X) \cong \bigoplus_{i=1}^{m} \mathbb{R}[X]/f_i(X)$ where the f_i have coefficients in \mathbb{R} , are irreducible over \mathbb{R} , and $f_1 \dots f_m = g$ (note that the f_i are distinct since L is separable over \mathbb{Q}). We also know that each f_i is of degree 1 or 2. When f_i has degree 1, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{R} and when f_i has degree 2, then $\mathbb{R}[X]/f_i(X)$ is isomorphic to \mathbb{C} . Since \mathbb{Q} has a natural embedding into \mathbb{R} , we obtain a natural embedding of

$$j: L \cong \mathbb{Q}[X]/f(X) \longrightarrow \bigoplus_{i=1}^m \mathbb{R}[X]/f_i(X).$$

Composing j with projection onto the *i*-th factor of

$$\bigoplus_{i=1}^m \mathbb{R}[X]/f_i(X)$$

then gives a map from $L \longrightarrow \mathbb{R}$ or $L \longrightarrow \mathbb{C}$. In fact, when deg $f_i = 2$ and $\mathbb{R}[X]/f_i(X)$ is \mathbb{C} we get two embeddings by composing with conjugation. The image of L is the same for these two embeddings, so we will want to link these two in some way...

Let's order the embeddings $\sigma_1, \ldots, \sigma_n$ $(n = [L : \mathbb{Q}])$ in the following way. We let $\sigma_1, \ldots, \sigma_s$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i = r + 1, r + 3, \ldots$, we let σ_i be a complex embedding and let $\sigma_{i+1} = \overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have r + 2s = n.

Now, we can embed \mathcal{O}_L into \mathbb{R}^n by letting

$$h(y) = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \Re(\sigma_{r+1}(y)), \Im(\sigma_{r+1}(y)), \dots, \Re(\sigma_{r+2(s-1)}(y)), \Im(\sigma_{r+2(s-1)}(y))) \\ = (\sigma_{1}(y), \dots, \sigma_{r}(y), \\ \frac{\sigma_{r+1}(y) + \sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y) - \sigma_{r+2}(y)}{2i}, \dots, \\ \frac{\sigma_{r+2(s-1)}(y) + \sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y) - \sigma_{r+2(s-1)+1}(y)}{2i}).$$

Let us also denote as h_i the map $h : \mathcal{O}_L \longrightarrow \mathbb{R}$ given by composing h with projection p_i onto the *i*-th coordinate of \mathbb{R}^n .

We will continue to use h and h_i as defined above. We will also continue to let s and r be as above and to let n = r + 2s be the degree $[L:\mathbb{Q}]$.

Proposition 18.4. Let $\{w_1, \ldots, w_m\}$ be a basis for \mathcal{O}_L over \mathbb{Z} . We have

$$\left(\det[h_i(w_j)]\right)^2 = \frac{1}{(-2i)^{2s}} |\Delta(\mathcal{O}_L/\mathbb{Z})|.$$

Proof. From the HW just assigned (problem #2), we know that

$$(\det[\sigma_i(w_j)])^2 = |\Delta(\mathcal{O}_L/\mathbb{Z})|.$$

We also know from (1) that h_i differs from σ_i (when the σ 's are ordered as in that equation) only for σ_i complex and we can obtain h_i for even i > r by adding up two σ_i and dividing by 2. We can then get the odd *i*-th rows by subtracting the i-1 row from the *i*-th row and diving by -i. I will put this on the board. \Box

Note that we can actually define $\Delta(\mathcal{O}_L/\mathbb{Z})$ as a number (positive or negative) not just an ideal. I will say more about this next time.

Corollary 18.5. The image $h(\mathcal{O}_L)$ in \mathbb{R}^n is a full lattice.

Proof. Since $\Delta(\mathcal{O}_L/\mathbb{Z}) \neq 0$, the determinant $\det[h_i(w_j)] \neq 0$, so the $h_i(w_j)$ are linearly independent over \mathbb{R} . Hence they generate \mathbb{R}^n as an \mathbb{R} -vector space and \mathcal{O}_L is a full lattice.

In the book the following characterization of a lattice is proven. We will not use it, so I will not give the proof in class.

Theorem 18.6. (Thm. 12.2) An additive subgroup $\mathcal{L} \subset \mathbb{R}^n$ of \mathbb{Z} -rank n is a full lattice if and only if every sphere in \mathbb{R}^n contains only finitely many elements of \mathcal{L} .

We will not need this characterization.

***** Fundamental parallelepipeds. Let \mathcal{L} be a full lattice in \mathbb{R}^n and let w_1, \ldots, w_n be a basis for \mathcal{L} over \mathbb{Z} . We call the set

$$\mathcal{T} = \{ r_1 w_1 + \dots + r_n w_n \mid 0 \le r_i < 1, r_i \in \mathbb{R} \}$$

the fundamental parallelepiped for the basis w_1, \ldots, w_n .

Lemma 18.7. Let \mathcal{L} be a full lattice in \mathbb{R}^n and let w_1, \ldots, w_n be a basis for \mathcal{L} over \mathbb{Z} with fundamental parallelepipeds \mathcal{T} . Then every element $v \in \mathbb{R}^n$ can be written as $t + \lambda$ for a unique $t \in \mathcal{T}$ and $\lambda \in \mathcal{L}$. In particular, the sets $\lambda + \mathcal{T}$ are disjoint and cover all of \mathbb{R}^n .

Proof. Let $v \in V$. Write $v = \sum_{i=1}^{m} s_i w_i$ (uniquely). Then each s_i can be written uniquely as an integer plus a real number less than 1, that is as

$$s_i = [s_i] + r_i$$

where the brackets are the greatest integer function and $r_i < 1$.

Now, we want to work with volumes. A volume on \mathbb{R}^n comes from a choice of orthonormal basis x_1, \ldots, x_n . Let V be the vector space \mathbb{R}^n

equipped with the orthonormal basis x_1, \ldots, x_n . For a full lattice \mathcal{L} with basis w_1, \ldots, w_n , we can write

4

$$w_i = \sum_{j=1}^n s_{ij} x_j$$

It follows from multivariable calculus that the volume of the parallelepipeds \mathcal{T} for the w_i is

$$\int \dots \int_{\mathcal{T}} dx_1 \dots dx_n = \int \dots \int_{0 \le x_i < 1} |\det[s_{ij}]| dx_1 \dots dx_n = |\det[s_{ij}]|.$$

We call the quantity $|\det[s_{ij}]|$ the volume of \mathcal{L} . It does not depend on our choice of basis since any two choice of bases differ by a change of basis matrix with determinant ± 1 .

Note that there is a choice of basis implicit in our map $h : \mathcal{O}_L \longrightarrow \mathbb{R}^n$. This basis comes from the coordinates with which we have described our map. We will call this basis $\{x_1, \ldots, x_n\}$ and call \mathbb{R}^n equipped with this volume form V.

Definition 18.8. For a full lattice \mathcal{L} in \mathbb{R}^n , we define $\operatorname{Vol}(\mathcal{L})$ to the absolute value of the determinant of the matrix obtained by lining up the bases elements for \mathcal{L} as vectors. (Observe that this does not depend on our choice of basis).

Theorem 18.9. The volume of $h(\mathcal{O}_L)$ in V is

$$\frac{1}{2^s}\sqrt{|\Delta(\mathcal{O}_L/\mathbb{Z})|}.$$

Proof. This follows immediately from Proposition 18.4, since the matrix we have written is with respect to the basis x_i above.

Now, let I be an ideal in \mathcal{L} . The ideal I is torsion-free as \mathbb{Z} -module. We can calculate the volume of h(I) in terms of the degree of L, the discriminant $|\Delta(\mathcal{O}_L/\mathbb{Z})|$, and |N(I)|.

Theorem 18.10. We have $\operatorname{Vol}(h(I)) = |\operatorname{N}(I)|| \operatorname{Vol}(h(\mathcal{O}_L))|$.

Proof. Write $I = \mathcal{Q}_1^{e_1} \dots \mathcal{Q}_m^{e_m}$ and let f_i be the degree $[\mathcal{O}_L/\mathcal{Q}_i : \mathbb{Z}/p_i\mathbb{Z}]$ where $p_i = \mathcal{Q}_i \cap \mathbb{Z}$. Since $N(\mathcal{Q}_i) = p_i^{f_i} = |\mathcal{O}_L/\mathcal{Q}_i|$ and $\mathcal{O}_L/\mathcal{Q}_i^{e_i}$ is a e_i -dimensional vector space over $\mathcal{O}_L/\mathcal{Q}_i$, we we see by the Chinese Remainder Theorem that $N(I) = |\mathcal{O}_L/I|$. Now, we can choose a basis $\{w_1, \dots, w_n\}$ for \mathcal{O}_L such that $\{a_1w_1, \dots, a_nw_n\}$ is a basis for I for some positive integers a_1, \dots, a_n (this a standard fact about free abelian groups that I will have you prove on your homework later). Clearly, we have

(2)
$$|\det[\sigma_i(a_j w_j)]| = |(a_1 \cdots a_n)| \operatorname{Vol}(h(\mathcal{O}_L)) = N(I) \operatorname{Vol}(h(\mathcal{O}_L))$$