
Math 568 Tom Tucker
NOTES FROM CLASS 11/10

Note: I organized this a little bit differently from in class.
Recall that if L and E are finite extensions of K, we say that L ane

E are linearly disjoint over K If

[EL : K] = [E : K][L : K].

Note that this is stronger than saying E ∩ L = K. For example, if
E = Q( 3

√
5) and L = Q(ξ3

3
√

5), then E · L has degree six over Q, not
degree nine, so E and L are not linearly disjoint over Q.

Note however that if L or E is Galois over K, then E and L are
linearly disjoint over K if and only if E ∩ L = K. The key fact here is
that if E is Galois then E = K(θ) for some θ such that K contains all
the conjugates of θ and thus contains the coefficients of any factor of
the minimal polynomial for θ.

Let’s now introduce semidirect products.
Let G be group. We say that G is the semidirect product N oH if

• H is a subgroup of G and N is a normal subgroup of G;
• HN = G; and
• H ∩N = {e}.

We have the following simple fact about composita of extensions.

Proposition 17.1. Let L and E be finite, separable, linearly disjoint
field extensions of a field K. Suppose that L is Galois over K. Then

Gal(EL/K) ∼= Gal(L/K) o Gal(EL/L).

Proof. Since L is Galois over K and E, L are disjoint over K, we
have Gal(L/K) ∼= Gal(EL/E). Now, let N = Gal(EL/E) and let
H = Gal(EL/L). Then N is normal. Since K is the fixed field of
HN , we see that HN = Gal(EL/K). It follows that H ∩N = {e} by
looking at degrees of extensions. �

Proposition 17.2. Let ξm be a primitive m-th root of unity. Then
Gal(Q(ξm)/Q) is canonically isomorphic to (Z/mZ)∗ (the multiplica-
tive units of Z/mZ).

Proof. Let ξm be a primitive m-th root of unity. Then for any σ ∈
Gal(Q(ξm)/Q, we have σ(ξm) = ξim where i ∈ (Z/mZ)∗. The map
θ : Gal(Q(ξm)/Q) −→ (Z/mZ)∗ sending σ to i is an isomorphism since
all ξim, where i ∈ (Z/mZ)∗, are conjugate to ξm. �

Proposition 17.3. Let L be a field containing a primitive m-th root
of unity ξm, let xm − a be irreducible over L, and let M be a spitting
field of xm − a over L. Then Gal(L/M) is isomorphic to Z/mZ.
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Proof. Let α be a root of xm − a. Then θ : σ 7→ σ(α)/α is an isomor-
phism from Gal(M/L) to the m-th roots of unity in L. Since the group
of m-th roots of unity in L is isomorphic to Z/mZ, we are done. �

Theorem 17.4. Suppose that xm − a is irreducible over Q and that
Q( m
√
a) and Q(ξm) are linearly disjoint over Q. Let M be the splitting

field of xm−a over Q. Then Gal(M/Q) is isomorphic to the semidirect
product Z/mZ o (Z/mZ)∗.

Proof. This follows from Propositions 17.1, 17.2, and 17.3.
�

Let’s prove a few things about discriminants, before moving on.

Lemma 17.5. Let A be a Dedekind domain with field of fractions K,
let K ⊆ L, and K ⊆ E be separable, finite extensions that are linearly
disjoint over K. Let RE be the integral closure of A in E and let B be
an integral extension of A with field of fractions L. Let C = REB be the
compositum of RE and B in EL. Then ∆(C/RE)RE = ∆(B/A)RE.

Proof. It will suffice to show that for P be a prime of A andS = A \P ,
we have S−1RE∆(S−1C/S−1RE) = S−1RE∆(S−1B/AP), since

S−1RE∆(B/A) = S−1REAP∆(B/A) = S−1RE(S−1/AP).

Thus, we may assume that A = AP , that B = S−1B, RE = S−1RE,
C = S−1C. Let w1, . . . , wn be basis for B over A (we have assumed
now that A is a DVR). Then w1, . . . , wn must also generate C as an
RE-module. Moreover, since [EL : E] = [L : K] = n, since E and
L are linearly disjoint. Hence, w1, . . . , wn is a basis for C over RE.
We can use it to calculate both discriminants then. It is clear that
TL/K(y) = TLE/L(y) for any y ∈ L, since the trace is determined by
how ywi can be written in terms of the wi. We see then that

∆(C/B) = det[TLE/L(wiwj)] = det[TL/K(wiwj)] = ∆(RE/A),

and we are done. �

Proposition 17.6. Let A be a Dedekind domain with field of fractions
K, let K ⊆ L, and K ⊆ E be separable, finite extensions that are
linearly disjoint over K. Let RE be the integral closure of A in E and
let RL be the integral closure of A in L. Suppose that A∆(RE/A) +
A∆(RL/A) = 1. Then C = RERL is Dedekind.

Proof. Let M be a prime in RERL such that M ∩ A = P . Since
A∆(RE/A) +A∆(RL/A) = 1, either A∆(RE/A) or A∆(RL/A) is con-
tained in P . We may suppose WLOG that A∆(RL/A) isn’t contained
in P . It follows from the Lemma above that for any Q ∩ RE that is
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prime and lies over P , the ideal RE∆(C/RE) doesn’t contain Q. Thus,
if S = RE \ Q, then S−1C is Dedekind, so M is invertible. So every
prime M of C is invertible and C must be Dedekind. �

We were in the middle of proving the following...

Proposition 17.7. Let A be a Dedekind domain with field of fractions
K, let K ⊆ L, and K ⊆ E be separable, finite extensions that are
linearly disjoint over K. Let RE be the integral closure of A in E and
let RL be the integral closure of A in L. Suppose that A∆(RE/A) +
A∆(RL/A) = 1. Then C = RERL is Dedekind.

Proof. Let M be a prime in RERL such that M ∩ A = P . Since
A∆(RE/A) + A∆(RL/A) = 1, either A∆(RE/A) or A∆(RL/A) is not
contained in P . We may suppose WLOG that A∆(RL/A) doesn’t isn’t
contained in P . It follows from the Lemma above that for any Q∩RE

that is prime and lies over P , the ideal RE∆(C/RE) doesn’t contain
Q. Thus, if S = RE \ Q, then S−1C is Dedekind, so M is invertible.
So every prime M of C is invertible and C must be Dedekind. �

*********************** Now, let’s move on to the class group.
Recall that for any integral domain R, we have notion of invertible
ideals (recall that it is a fractional ideal with an inverse) and that we
have an exact sequence

0 −→ Pri(R) −→ Inv(R) −→ Pic(R) −→ 0.

where Pri(R) is the set of principal ideals ofR, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, all fractional ideals are invertible and we write
this as

0 −→ Pri(R) −→ Fr(R) −→ Cl(R) −→ 0.

We call the quotient Cl(R) above the class group of R. When R is the
integral closure OL of Z in some number field L, we often write Cl(L)
for Cl(OL). We also write ∆(L) for ∆(OL/Z). We want to prove the
following.

Theorem 17.8. Let L be a number field. Then Cl(L) is finite.

We’ve already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[

√
19]) 6= 1 (this ring isn’t Dedekind, but later we’ll see Dedekind

rings with nontrivial class groups.
How did we show that Cl(Z[i]) = 1? We took advantage of the fact

that Z[i] forms a sublattice of C. We’ll try to do that in general.
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Here is the idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding L −→ C and then conjugating this
embedding by elements in the cosets of HL in Gal(M/Q) for M some
Galois extension of Q containing L. We’ll use these to make B a full
lattice in Rn. What is a full lattice?

Definition 17.9. A lattice L ⊂ Rn is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice L ⊂ Rn is a free Z-module of rank n that generates
Rn as a R-vector space.

Example 17.10. (1) Z[θ] where θ2 = 3 is not a full lattice of R2

under the embedding 1 7→ 1 and θ 7→
√

3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R2 where R2 is C considered as an R-vector
space with basis 1, i over R.

There are two different types of embeddings of L into C. There are
the real ones and the complex ones. An embedding σ : L −→ C is
real if σ(y) = σ(y) for every y ∈ L (the bar here denotes complex
conjugation) and is complex otherwise.

Let’s order the embeddings σ1, . . . , σn (n = [L : Q]) in the following
way. We let σ1, . . . , σs be real embeddings. The remaining embeddings
come in pairs as explained above, so for i = r + 1, r + 3, . . . , we let σi
be a complex embedding and let σi+1 = σi+1. We let s be the number
of complex embeddings. We have r + 2s = n.

Now, we can embed OL into Rn by letting

h(y) = (σ1(y), . . . , σr(y),

<(σr+1(y)),=(σr+1(y)), . . . ,<(σr+2(s−1)(y)),=(σr+2(s−1)(y)))

=
(
σ1(y), . . . , σr(y),

σr+1(y) + σr+2(y)

2
,
σr+1(y)− σr+2(y)

2i
, . . . ,

σr+2(s−1)(y) + σr+2(s−1)(y)

2
,
σr+2(s−1)(y)− σr+2(s−1)+1(y)

2i

)
.

(1)

Let us also denote as hi the map h : OL −→ R given by composing h
with projection pi onto the i-th coordinate of Rn.

We will continue to use h and hi as defined above. We will also
continue to let s and r be as above and to let n = r+ 2s be the degree
[L : Q].


