Math 568 Tom Tucker
NOTES FROM CLASS 11/10

Note: I organized this a little bit differently from in class.
Recall that if L and E are finite extensions of K, we say that L ane
E' are linearly disjoint over K If

[EL: K|]=[FE: K|[L:K].

Note that this is stronger than saying £ N L = K. For example, if
E = Q(v/5) and L = Q(&+/5), then E - L has degree six over Q, not
degree nine, so E and L are not linearly disjoint over Q.

Note however that if L or E is Galois over K, then E and L are
linearly disjoint over K if and only if £ N L = K. The key fact here is
that if £ is Galois then £ = K () for some 0 such that K contains all
the conjugates of # and thus contains the coefficients of any factor of
the minimal polynomial for 6.

Let’s now introduce semidirect products.

Let G be group. We say that G is the semidirect product N x H if

e H is a subgroup of G and N is a normal subgroup of G;
e HN = (; and
e HN N = {e}.
We have the following simple fact about composita of extensions.

Proposition 17.1. Let L and E be finite, separable, linearly disjoint
field extensions of a field K. Suppose that L is Galois over K. Then

Gal(EL/K) = Gal(L/K) x Gal(EL/L).

Proof. Since L is Galois over K and FE, L are disjoint over K, we
have Gal(L/K) = Gal(EL/E). Now, let N = Gal(FL/E) and let
H = Gal(EL/L). Then N is normal. Since K is the fixed field of
HN, we see that HN = Gal(EL/K). Tt follows that H N N = {e} by

looking at degrees of extensions. ([l

Proposition 17.2. Let &, be a primitive m-th root of unity. Then
Gal(Q(&n)/Q) is canonically isomorphic to (Z/mZ)* (the multiplica-
tiwe units of Z/mZ.).

Proof. Let &, be a primitive m-th root of unity. Then for any o €
Gal(Q(&,)/Q, we have o(&,) = & where i € (Z/mZ)*. The map
0 : Gal(Q(&,)/Q) — (Z/mZ)* sending o to i is an isomorphism since
all & where i € (Z/mZ)*, are conjugate to &,. O

Proposition 17.3. Let L be a field containing a primitive m-th root
of unity &, let ™ — a be irreducible over L, and let M be a spitting
field of ™ — a over L. Then Gal(L/M) is isomorphic to Z/mZ.
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Proof. Let a be a root of 2™ — a. Then 0 : 0 — o(«)/a is an isomor-
phism from Gal(M /L) to the m-th roots of unity in L. Since the group
of m-th roots of unity in L is isomorphic to Z/mZ, we are done. [

Theorem 17.4. Suppose that x™ — a s irreducible over Q and that
Q(®/a) and Q(&,,) are linearly disjoint over Q. Let M be the splitting
field of x™ —a over Q. Then Gal(M/Q) is isomorphic to the semidirect
product Z/mZ X (Z/mZ)*.

Proof. This follows from Propositions 17.1, 17.2, and 17.3.

Let’s prove a few things about discriminants, before moving on.

Lemma 17.5. Let A be a Dedekind domain with field of fractions K,
let K C L, and K C E be separable, finite extensions that are linearly
disjoint over K. Let Rg be the integral closure of A in E and let B be
an integral extension of A with field of fractions L. Let C' = RgB be the
compositum of Rg and B in EL. Then A(C/Rg)Rg = A(B/A)Rg.

Proof. Tt will suffice to show that for P be a prime of A andS = A\ P,
we have ST'RpA(S™'C/S™'Rg) = ST'RgA(S™'B/Ap), since

ST'RpA(B/A) = ST'RpApA(B/A) = ST'Rp(S™/Ap).
Thus, we may assume that A = Ap, that B = S™'B, Rp = S™'Rp,

C = S71C. Let wy,...,w, be basis for B over A (we have assumed
now that A is a DVR). Then wy, ..., w, must also generate C as an
Rp-module. Moreover, since [EL : E] = [L : K] = n, since F and
L are linearly disjoint. Hence, wy,...,w, is a basis for C' over Rg.

We can use it to calculate both discriminants then. It is clear that
Trk(y) = Tre/(y) for any y € L, since the trace is determined by
how yw; can be written in terms of the w;. We see then that

and we are done. n

Proposition 17.6. Let A be a Dedekind domain with field of fractions
K, let K C L, and K C E be separable, finite extensions that are
linearly disjoint over K. Let Rg be the integral closure of A in E and
let Ry, be the integral closure of A in L. Suppose that AA(Rg/A) +
AA(RL/A) =1. Then C = RgRy, is Dedekind.

Proof. Let M be a prime in RgR; such that M N A = P. Since
AA(Rg/A)+ AA(RL/A) = 1, either AA(Rg/A) or AA(RL/A) is con-
tained in P. We may suppose WLOG that AA(RL/A) isn’t contained
in P. It follows from the Lemma above that for any O N Rg that is
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prime and lies over P, the ideal RgA(C/Rg) doesn’t contain Q. Thus,
if S = Rg\ Q, then S7!C is Dedekind, so M is invertible. So every
prime M of C' is invertible and C' must be Dedekind. 0

We were in the middle of proving the following...

Proposition 17.7. Let A be a Dedekind domain with field of fractions
K, let K C L, and K C FE be separable, finite extensions that are
linearly disjoint over K. Let Rg be the integral closure of A in E and
let Ry, be the integral closure of A in L. Suppose that AA(Rg/A) +
AA(RL/A) =1. Then C = RgRy, is Dedekind.

Proof. Let M be a prime in RgR; such that M N A = P. Since
AA(Rg/A) + AA(RL/A) = 1, either AA(Rg/A) or AA(R/A) is not
contained in P. We may suppose WLOG that AA(R;/A) doesn’t isn’t
contained in P. It follows from the Lemma above that for any QN Rg
that is prime and lies over P, the ideal RpA(C/Rg) doesn’t contain
Q. Thus, if S = Rg \ Q, then S™'C' is Dedekind, so M is invertible.
So every prime M of C' is invertible and C' must be Dedekind. O

Toeiicoiibicioioseiioce . Now, let’s move on to the class group.
Recall that for any integral domain R, we have notion of invertible
ideals (recall that it is a fractional ideal with an inverse) and that we
have an exact sequence

0 — Pri(R) — Inv(R) — Pic(R) — 0.

where Pri(R) is the set of principal ideals of R, Inv(R) is set of invertible
ideals of R, and the group law is multiplication of fractional ideals.
When R is Dedekind, all fractional ideals are invertible and we write
this as

0 — Pri(R) — Fr(R) — CI(R) — 0.
We call the quotient CI(R) above the class group of R. When R is the
integral closure Of, of Z in some number field L, we often write C1(L)

for C1(Op). We also write A(L) for A(Or/7Z). We want to prove the
following.

Theorem 17.8. Let L be a number field. Then CI(L) is finite.

We've already shown this Z[i]. We showed that Cl(Z[i]) = 1, i.e.
that it is a principal ideal domain. On the other hand, we’ve seen that
Pic(Z[/19]) # 1 (this ring isn’t Dedekind, but later we’ll see Dedekind
rings with nontrivial class groups.

How did we show that CI(Z[i]) = 17 We took advantage of the fact
that Z[i] forms a sublattice of C. We'll try to do that in general.



Here is the idea... If we have a number field L of degree n over
Q, then we have n different embeddings of L into C. They can be
obtained by fixing one embedding . — C and then conjugating this
embedding by elements in the cosets of Hy, in Gal(M/Q) for M some
Galois extension of Q@ containing L. We’ll use these to make B a full
lattice in R™. What is a full lattice?

Definition 17.9. A lattice £ C R" is a free Z-module whose rank as a
Z-module is the equal to the dimension of the R-vector space generated
by L. A full lattice £ C R" is a free Z-module of rank n that generates
R™ as a R-vector space.

Example 17.10. (1) Z[f] where 6? = 3 is not a full lattice of R?
under the embedding 1 — 1 and 6 — /3, since it generates an
R-vector space of dimension 1.

(2) Z[i] is full lattice in R* where R? is C considered as an R-vector
space with basis 1,7 over R.

There are two different types of embeddings of L into C. There are
the real ones and the complex ones. An embedding ¢ : L — C is
real if o(y) = o(y) for every y € L (the bar here denotes complex
conjugation) and is complex otherwise.

Let’s order the embeddings o4, ...,0, (n = [L : Q]) in the following
way. We let 01,...,0, be real embeddings. The remaining embeddings
come in pairs as explained above, so for i =r+ 1,7+ 3,..., we let o;
be a complex embedding and let ;.1 = 7;77. We let s be the number
of complex embeddings. We have r + 25 = n.

Now, we can embed Op into R™ by letting

h<y) = (01(@/), s ,0r<y),

R(or1(v)), S(or41(y))s -, §R(‘77‘-%2(5—1)(7J)): %(UH—Z(S—l)(y)))

= (Ul(y)a B 7UT(y)7

Jr+l(y) + 0-7‘+2(y) Or+1(y) - UT+2(y)

2 ’ 21 Y
Ur+2(s—1)(y) + Ur+2(s—1)(y) 0r+2(s—1)(y) - Ur+2(s—1)+1(y))
2 ’ 21 '

Let us also denote as h; the map h : O — R given by composing h
with projection p; onto the i-th coordinate of R™.

We will continue to use h and h; as defined above. We will also
continue to let s and r be as above and to let n = r + 2s be the degree

L:qQ).
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