Math 568 Tom Tucker
 NOTES FROM CLASS 11/10

Note: I organized this a little bit differently from in class.
Recall that if L and E are finite extensions of K, we say that L ane E are linearly disjoint over K If

$$
[E L: K]=[E: K][L: K] .
$$

Note that this is stronger than saying $E \cap L=K$. For example, if $E=\mathbb{Q}(\sqrt[3]{5})$ and $L=\mathbb{Q}\left(\xi_{3} \sqrt[3]{5}\right)$, then $E \cdot L$ has degree six over \mathbb{Q}, not degree nine, so E and L are not linearly disjoint over \mathbb{Q}.

Note however that if L or E is Galois over K, then E and L are linearly disjoint over K if and only if $E \cap L=K$. The key fact here is that if E is Galois then $E=K(\theta)$ for some θ such that K contains all the conjugates of θ and thus contains the coefficients of any factor of the minimal polynomial for θ.

Let's now introduce semidirect products.
Let G be group. We say that G is the semidirect product $N \rtimes H$ if

- H is a subgroup of G and N is a normal subgroup of G;
- $H N=G$; and
- $H \cap N=\{e\}$.

We have the following simple fact about composita of extensions.
Proposition 17.1. Let L and E be finite, separable, linearly disjoint field extensions of a field K. Suppose that L is Galois over K. Then

$$
\operatorname{Gal}(E L / K) \cong \operatorname{Gal}(L / K) \rtimes \operatorname{Gal}(E L / L)
$$

Proof. Since L is Galois over K and E, L are disjoint over K, we have $\operatorname{Gal}(L / K) \cong \operatorname{Gal}(E L / E)$. Now, let $N=\operatorname{Gal}(E L / E)$ and let $H=\operatorname{Gal}(E L / L)$. Then N is normal. Since K is the fixed field of $H N$, we see that $H N=\operatorname{Gal}(E L / K)$. It follows that $H \cap N=\{e\}$ by looking at degrees of extensions.

Proposition 17.2. Let ξ_{m} be a primitive m-th root of unity. Then $\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{m}\right) / \mathbb{Q}\right)$ is canonically isomorphic to $(\mathbb{Z} / m \mathbb{Z})^{*}$ (the multiplicative units of $\mathbb{Z} / m \mathbb{Z}$).

Proof. Let ξ_{m} be a primitive m-th root of unity. Then for any $\sigma \in$ $\operatorname{Gal}\left(\mathbb{Q}\left(\xi_{m}\right) / \mathbb{Q}\right.$, we have $\sigma\left(\xi_{m}\right)=\xi_{m}^{i}$ where $i \in(\mathbb{Z} / m \mathbb{Z})^{*}$. The map $\theta: \operatorname{Gal}\left(\mathbb{Q}\left(\xi_{m}\right) / \mathbb{Q}\right) \longrightarrow(\mathbb{Z} / m \mathbb{Z})^{*}$ sending σ to i is an isomorphism since all ξ_{m}^{i}, where $i \in(\mathbb{Z} / m \mathbb{Z})^{*}$, are conjugate to ξ_{m}.

Proposition 17.3. Let L be a field containing a primitive m-th root of unity ξ_{m}, let $x^{m}-a$ be irreducible over L, and let M be a spitting field of $x^{m}-a$ over L. Then $\operatorname{Gal}(L / M)$ is isomorphic to $\mathbb{Z} / m \mathbb{Z}$.

Proof. Let α be a root of $x^{m}-a$. Then $\theta: \sigma \mapsto \sigma(\alpha) / \alpha$ is an isomorphism from $\operatorname{Gal}(M / L)$ to the m-th roots of unity in L. Since the group of m-th roots of unity in L is isomorphic to $\mathbb{Z} / m \mathbb{Z}$, we are done.

Theorem 17.4. Suppose that $x^{m}-a$ is irreducible over \mathbb{Q} and that $\mathbb{Q}(\sqrt[m]{a})$ and $\mathbb{Q}\left(\xi_{m}\right)$ are linearly disjoint over \mathbb{Q}. Let M be the splitting field of $x^{m}-a$ over \mathbb{Q}. Then $\operatorname{Gal}(M / \mathbb{Q})$ is isomorphic to the semidirect product $\mathbb{Z} / m \mathbb{Z} \rtimes(\mathbb{Z} / m \mathbb{Z})^{*}$.

Proof. This follows from Propositions 17.1, 17.2, and 17.3.

Let's prove a few things about discriminants, before moving on.
Lemma 17.5. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and let B be an integral extension of A with field of fractions L. Let $C=R_{E} B$ be the compositum of R_{E} and B in $E L$. Then $\Delta\left(C / R_{E}\right) R_{E}=\Delta(B / A) R_{E}$.

Proof. It will suffice to show that for \mathcal{P} be a prime of A and $S=A \backslash \mathcal{P}$, we have $S^{-1} R_{E} \Delta\left(S^{-1} C / S^{-1} R_{E}\right)=S^{-1} R_{E} \Delta\left(S^{-1} B / A_{\mathcal{P}}\right)$, since

$$
S^{-1} R_{E} \Delta(B / A)=S^{-1} R_{E} A_{\mathcal{P}} \Delta(B / A)=S^{-1} R_{E}\left(S^{-1} / A_{\mathcal{P}}\right)
$$

Thus, we may assume that $A=A_{\mathcal{P}}$, that $B=S^{-1} B, R_{E}=S^{-1} R_{E}$, $C=S^{-1} C$. Let w_{1}, \ldots, w_{n} be basis for B over A (we have assumed now that A is a DVR). Then w_{1}, \ldots, w_{n} must also generate C as an R_{E}-module. Moreover, since $[E L: E]=[L: K]=n$, since E and L are linearly disjoint. Hence, w_{1}, \ldots, w_{n} is a basis for C over R_{E}. We can use it to calculate both discriminants then. It is clear that $\mathrm{T}_{L / K}(y)=\mathrm{T}_{L E / L}(y)$ for any $y \in L$, since the trace is determined by how $y w_{i}$ can be written in terms of the w_{i}. We see then that

$$
\Delta(C / B)=\operatorname{det}\left[\mathrm{T}_{L E / L}\left(w_{i} w_{j}\right)\right]=\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]=\Delta\left(R_{E} / A\right)
$$

and we are done.
Proposition 17.6. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and let R_{L} be the integral closure of A in L. Suppose that $A \Delta\left(R_{E} / A\right)+$ $A \Delta\left(R_{L} / A\right)=1$. Then $C=R_{E} R_{L}$ is Dedekind.

Proof. Let \mathcal{M} be a prime in $R_{E} R_{L}$ such that $\mathcal{M} \cap A=\mathcal{P}$. Since $A \Delta\left(R_{E} / A\right)+A \Delta\left(R_{L} / A\right)=1$, either $A \Delta\left(R_{E} / A\right)$ or $A \Delta\left(R_{L} / A\right)$ is contained in \mathcal{P}. We may suppose WLOG that $A \Delta\left(R_{L} / A\right)$ isn't contained in \mathcal{P}. It follows from the Lemma above that for any $\mathcal{Q} \cap R_{E}$ that is
prime and lies over \mathcal{P}, the ideal $R_{E} \Delta\left(C / R_{E}\right)$ doesn't contain \mathcal{Q}. Thus, if $S=R_{E} \backslash \mathcal{Q}$, then $S^{-1} C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind.

We were in the middle of proving the following...
Proposition 17.7. Let A be a Dedekind domain with field of fractions K, let $K \subseteq L$, and $K \subseteq E$ be separable, finite extensions that are linearly disjoint over K. Let R_{E} be the integral closure of A in E and let R_{L} be the integral closure of A in L. Suppose that $A \Delta\left(R_{E} / A\right)+$ $A \Delta\left(R_{L} / A\right)=1$. Then $C=R_{E} R_{L}$ is Dedekind.

Proof. Let \mathcal{M} be a prime in $R_{E} R_{L}$ such that $\mathcal{M} \cap A=\mathcal{P}$. Since $A \Delta\left(R_{E} / A\right)+A \Delta\left(R_{L} / A\right)=1$, either $A \Delta\left(R_{E} / A\right)$ or $A \Delta\left(R_{L} / A\right)$ is not contained in \mathcal{P}. We may suppose WLOG that $A \Delta\left(R_{L} / A\right)$ doesn't isn't contained in \mathcal{P}. It follows from the Lemma above that for any $\mathcal{Q} \cap R_{E}$ that is prime and lies over \mathcal{P}, the ideal $R_{E} \Delta\left(C / R_{E}\right)$ doesn't contain \mathcal{Q}. Thus, if $S=R_{E} \backslash \mathcal{Q}$, then $S^{-1} C$ is Dedekind, so \mathcal{M} is invertible. So every prime \mathcal{M} of C is invertible and C must be Dedekind.
$* *$ Now, let's move on to the class group. Recall that for any integral domain R, we have notion of invertible ideals (recall that it is a fractional ideal with an inverse) and that we have an exact sequence

$$
0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Inv}(R) \longrightarrow \operatorname{Pic}(R) \longrightarrow 0
$$

where $\operatorname{Pri}(R)$ is the set of principal ideals of $R, \operatorname{Inv}(R)$ is set of invertible ideals of R, and the group law is multiplication of fractional ideals. When R is Dedekind, all fractional ideals are invertible and we write this as

$$
0 \longrightarrow \operatorname{Pri}(R) \longrightarrow \operatorname{Fr}(R) \longrightarrow \mathrm{Cl}(R) \longrightarrow 0 .
$$

We call the quotient $\mathrm{Cl}(R)$ above the class group of R. When R is the integral closure \mathcal{O}_{L} of \mathbb{Z} in some number field L, we often write $\mathrm{Cl}(L)$ for $\mathrm{Cl}\left(\mathcal{O}_{L}\right)$. We also write $\Delta(L)$ for $\Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. We want to prove the following.

Theorem 17.8. Let L be a number field. Then $\mathrm{Cl}(L)$ is finite.
We've already shown this $\mathbb{Z}[i]$. We showed that $\mathrm{Cl}(\mathbb{Z}[i])=1$, i.e. that it is a principal ideal domain. On the other hand, we've seen that $\operatorname{Pic}(\mathbb{Z}[\sqrt{19}]) \neq 1$ (this ring isn't Dedekind, but later we'll see Dedekind rings with nontrivial class groups.

How did we show that $\mathrm{Cl}(\mathbb{Z}[i])=1$? We took advantage of the fact that $\mathbb{Z}[i]$ forms a sublattice of \mathbb{C}. We'll try to do that in general.

Here is the idea... If we have a number field L of degree n over \mathbb{Q}, then we have n different embeddings of L into \mathbb{C}. They can be obtained by fixing one embedding $L \longrightarrow \mathbb{C}$ and then conjugating this embedding by elements in the cosets of H_{L} in $\operatorname{Gal}(M / \mathbb{Q})$ for M some Galois extension of \mathbb{Q} containing L. We'll use these to make B a full lattice in \mathbb{R}^{n}. What is a full lattice?

Definition 17.9. A lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module whose rank as a \mathbb{Z}-module is the equal to the dimension of the \mathbb{R}-vector space generated by \mathcal{L}. A full lattice $\mathcal{L} \subset \mathbb{R}^{n}$ is a free \mathbb{Z}-module of rank n that generates \mathbb{R}^{n} as a \mathbb{R}-vector space.

Example 17.10. (1) $\mathbb{Z}[\theta]$ where $\theta^{2}=3$ is not a full lattice of \mathbb{R}^{2}

 under the embedding $1 \mapsto 1$ and $\theta \mapsto \sqrt{3}$, since it generates an \mathbb{R}-vector space of dimension 1 .(2) $\mathbb{Z}[i]$ is full lattice in \mathbb{R}^{2} where \mathbb{R}^{2} is \mathbb{C} considered as an \mathbb{R}-vector space with basis $1, i$ over \mathbb{R}.
There are two different types of embeddings of L into \mathbb{C}. There are the real ones and the complex ones. An embedding $\sigma: L \longrightarrow \mathbb{C}$ is real if $\overline{\sigma(y)}=\sigma(y)$ for every $y \in L$ (the bar here denotes complex conjugation) and is complex otherwise.

Let's order the embeddings $\sigma_{1}, \ldots, \sigma_{n}(n=[L: \mathbb{Q}])$ in the following way. We let $\sigma_{1}, \ldots, \sigma_{s}$ be real embeddings. The remaining embeddings come in pairs as explained above, so for $i=r+1, r+3, \ldots$, we let σ_{i} be a complex embedding and let $\sigma_{i+1}=\overline{\sigma_{i+1}}$. We let s be the number of complex embeddings. We have $r+2 s=n$.

Now, we can embed \mathcal{O}_{L} into \mathbb{R}^{n} by letting

$$
\begin{align*}
& h(y)=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \left.\quad \Re\left(\sigma_{r+1}(y)\right), \Im\left(\sigma_{r+1}(y)\right), \ldots, \Re\left(\sigma_{r+2(s-1)}(y)\right), \Im\left(\sigma_{r+2(s-1)}(y)\right)\right) \\
& \quad=\left(\sigma_{1}(y), \ldots, \sigma_{r}(y),\right. \\
& \quad \frac{\sigma_{r+1}(y)+\sigma_{r+2}(y)}{2}, \frac{\sigma_{r+1}(y)-\sigma_{r+2}(y)}{2 i}, \ldots, \tag{1}\\
& \left.\quad \frac{\sigma_{r+2(s-1)}(y)+\sigma_{r+2(s-1)}(y)}{2}, \frac{\sigma_{r+2(s-1)}(y)-\sigma_{r+2(s-1)+1}(y)}{2 i}\right) .
\end{align*}
$$

Let us also denote as h_{i} the map $h: \mathcal{O}_{L} \longrightarrow \mathbb{R}$ given by composing h with projection p_{i} onto the i-th coordinate of \mathbb{R}^{n}.

We will continue to use h and h_{i} as defined above. We will also continue to let s and r be as above and to let $n=r+2 s$ be the degree $[L: \mathbb{Q}]$.

