Math 568 Tom Tucker
Notes from Class 11/5
Lemma 16.1. Suppose that L is Galois over K. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A=\mathcal{P}$ and let $f=[B / \mathcal{Q}: A / \mathcal{P}]$. Then $\mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$.

Proof. Since we know that $\mathrm{N}(\mathcal{Q})$ is a power of \mathcal{P}, it suffices to show that $A_{\mathcal{P}} \mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$, which is equivalent to showing that $\mathrm{N}\left(S^{-1} B \mathcal{Q}\right)=\mathcal{P}^{f}$, where $S=A \backslash \mathcal{P}$. We write

$$
\mathrm{N}(\mathcal{Q})=\mathcal{P}^{\ell}
$$

It suffices to show this for $A=A_{\mathcal{P}}$ and $B=S^{-1} B$. In this case, B is a principal ideal domain and we may write $\mathcal{Q}=B \pi$. Now, letting $G=\operatorname{Gal}(L / K)$, we see that

$$
B \mathrm{~N}(\mathcal{Q})=B \mathrm{~N}(B \pi)=\prod_{\sigma \in G} B \sigma(\pi)=\prod_{\sigma \in G} \sigma(\mathcal{Q})
$$

Letting $\mathcal{Q}_{1}, \ldots, \mathcal{Q}_{m}$ be the distinct conjugates of \mathcal{Q}, i.e. all the primes of B lying over \mathcal{P}, we see that

$$
\mathrm{N}(\mathcal{Q})=\mathcal{Q}_{1}^{t_{1}} \cdots \mathcal{Q}_{m}^{t_{m}}
$$

where the $\sum_{i=1}^{m} t_{i}=n$. We also know that $\operatorname{since} \mathrm{N}(\mathcal{Q})$ is a power of \mathcal{P}, and

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e} \cdots \mathcal{Q}_{m}^{e}
$$

for some positive integer e, all of the t_{i} must equal $e \ell$ for ℓ. Thus, we have $m(e \ell)=n$. On the other hand, we know that the relative degrees $\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]$ are all equal to some fixed f, so we have

$$
n=\sum_{i=1}^{m} e f=m e f
$$

This gives mef $=m e \ell$, so $\ell=f$, as desired.
Theorem 16.2. Let L be any finite separable extension of K and let A and B be a usual. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A=\mathcal{P}$ and let $f=\left[B / \mathcal{Q}_{i}: A / \mathcal{P}\right]=f$. Then $\mathrm{N}(\mathcal{Q})=\mathcal{P}^{f}$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathcal{M} be a maximal ideal of R with $\mathcal{M} \cap B=\mathcal{Q}$. From the previous Lemma, we know that $\mathrm{N}_{M / L}(\mathcal{M})=\mathcal{Q}^{[R / \mathcal{M}: B / \mathcal{Q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$
\mathrm{N}_{L / K}\left(\mathcal{Q}^{[R / \mathcal{M}: B / \mathcal{Q}]}\right)=\mathrm{N}_{L / K}\left(\mathrm{~N}_{M / L}(\mathcal{M})\right)=\mathrm{N}_{M / K}(\mathcal{M})=\mathcal{P}^{[R / \mathcal{M}: A / \mathcal{P}]}
$$

Thus

$$
\mathrm{N}_{L / K}(\mathcal{Q})=\mathcal{P}^{\left[\frac{[R / \mathcal{M}: A / \mathcal{P}]}{[R / \mathcal{M}: B / \mathcal{Q}]}\right.}=\mathcal{P}^{f}
$$

where $f=[B / \mathcal{Q}: A / \mathcal{P}]$.
An easy application. Which positive numbers m can be written as $a^{2}+b^{2}$ for integers a and b ?
Theorem 16.3. A positive integer m can be written as $a^{2}+b^{2}$ for integers a and b if and only if every prime $p \mid m$ such that $p \equiv 3$ $(\bmod 4)$ appears to an even power in the factorization of m.
Proof. Let $B=\mathbb{Z}[i]$. Then $\mathrm{N}(a+b i)=a^{2}+b^{2}$, for $a, b \in \mathbb{Z}$. Since B is a principal ideal domain, a positive integer $m=\mathrm{N}(a+b i)$ for some $a+b i \in B$ if and only if $(m)=\mathrm{N}(I)$ for some ideal I of \mathbb{Z}. Recall that from Problem $6 \# 4$, we know that Show that $\mathbb{Z}[i] p$ factors as

$$
\begin{array}{rll}
\mathcal{Q}^{2} & ; & \text { if } p=2 \\
\mathcal{Q}_{1} \mathcal{Q}_{2} & ; & \text { if } p \equiv 1 \quad(\bmod 4) \\
\mathcal{Q} & ; & \text { if } p \equiv 3 \quad(\bmod 4),
\end{array}
$$

where $\mathcal{Q}, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_{1} \neq \mathcal{Q}_{2}$. It follows that there is an ideal \mathcal{Q}_{p} of B such that $\mathrm{N}(\mathcal{Q})=\mathbb{Z} p$ if and only if p is not congruent to $3 \bmod 4$. If $p \equiv 3(\bmod 4)$, then $p B$ is the only prime lying over p and $\mathrm{N}(p B)=(\mathbb{Z} p)^{2}$. Factoring m as

$$
m=\prod_{p \neq 3} \prod_{\substack{(\bmod 4)}} p^{s_{i}} \prod_{p \equiv 3} p^{(\bmod 4)} p^{t_{i}}
$$

Letting \mathcal{Q}_{p} be as above, we see that the ideal

$$
I=\prod_{\substack{p \neq 3 \\ p \bmod 4) \\ p \mid m}} \mathcal{Q}_{p}^{s_{p}} \prod_{\substack{(\bmod 4) \\ p \mid m}}(\mathcal{P} B)^{\frac{t_{p}}{2}}
$$

Has the property that $\mathrm{N}(I)=\mathbb{Z} m$. On the other hand if I is any ideal of B then $\mathbb{Z}_{(p)} \mathrm{N}(I)=\left(\mathrm{N}\left(B_{p B} I\right)\right)^{2}$, for any $p \equiv 1(\bmod 4)$, so if $\mathbb{Z} m=\mathrm{N}(I)$, then t_{p} is even. So we are done.

Now, let's begin working with cyclotomic fields. We say that ξ_{m} is a primitive m-th root of unity if $\xi_{m}^{m}=1$ but $\xi_{m}^{d} \neq 1$ for any $d<m$. We define the m-th cyclotomic as

$$
\Phi_{m}(X)=\prod_{\substack{0<i<m \\ \operatorname{gcd}(i, m)=1}}\left(X-\xi_{m}^{i}\right)
$$

We will show that $\Phi_{m}(X)$ is irreducible for all m. Note that if $m=p^{a}$ for p a prime then $\Phi_{m}(X+1)$ is Eistenstein so we know it is irreducible already.

Recall the definition:

$$
\phi(m)=\#\{i \in \mathbb{Z} \mid 0<i<m \text { and } \operatorname{gcd}(i, m)=1\}
$$

Then the degree of Φ_{m} is $\phi(m)$. Recall that $\phi\left(p^{a}\right)=\left(p^{a}-p^{a-1}\right)$ and that $\phi\left(m_{1} m_{2}\right)=\phi\left(m_{1}\right) \phi\left(m_{2}\right)$ if $\operatorname{gcd}\left(m_{1}, m_{2}\right)=1$.
Lemma 16.4. Let $m=p^{a}$. Then:
(i) $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind;
(ii) p is the only prime that ramifies in $\mathbb{Z}\left[\xi_{m}\right]$;
(iii) $p \mathbb{Z}\left[\xi_{m}\right]=\left(\xi_{m}-1\right)^{\phi(m)}$.

To see that $\mathbb{Z}\left[\xi_{m}\right]$ id Dedekind recall that p is the only prime that divides $\Delta\left(\mathbb{Z}\left[\xi_{m}\right] / \mathbb{Z}\right)$ and that the prime lying over p takes the form $\left(p, \xi_{m}-1\right)$ since $\Phi_{m}(X)$ is congruent to a $(X-1)^{\phi(m)}$ modulo p. Since $N\left(\xi_{m}-1\right)= \pm 1$, we see that $\left(p, \xi_{m}-1\right)=\left(\xi_{m}-1\right)$ is principal and therefore invertible. We just saw that p is the only prime that divides $\Delta\left(\mathbb{Z}\left[\xi_{m}\right] / \mathbb{Z}\right)$ so p is the only prime that can ramify in $\mathbb{Z}\left[\xi_{m}\right]$ and that $p \mathbb{Z}\left[\xi_{m}\right]=\left(\xi_{m}-1\right)^{\phi(m)}$ as desired.
Theorem 16.5. For any m, we have $\left[\mathbb{Q}\left(\xi_{m}\right): \mathbb{Q}\right]=\phi(m)$. Thus, Φ_{m} is irreducible.

Proof. We proceed by induction on the number of prime factors of m. If m is a prime power then we are done since Φ_{m} is then Eistenstein. Now, assume m has n prime factors for $n>1$. We write $m=m^{\prime} p^{a}$. Then by induction $\left[\mathbb{Q}\left(\xi_{m^{\prime}}\right): \mathbb{Q}\right]=\phi\left(m^{\prime}\right)$ and $\left[\mathbb{Q}\left(\xi_{p^{a}}\right): \mathbb{Q}\right]=\phi\left(p^{a}\right)$. Since $\mathbb{Q}\left(\xi_{m^{\prime}}\right)$ and $\mathbb{Q}\left(\xi_{p^{a}}\right)$ are Galois, we will thus be done if we can show that $\mathbb{Q}\left(\xi_{m^{\prime}}\right) \cap \mathbb{Q}\left(\xi_{p^{a}}\right)=\mathbb{Q}$. Write $\mathbb{Q}\left(\xi_{m^{\prime}}\right) \cap \mathbb{Q}\left(\xi_{p^{a}}\right)=L$ and let \mathcal{O}_{L} denote the ring of integers of L. Then $p \mathcal{O}_{L}=\mathcal{Q}^{[L: \mathbb{Q}]}$ since p ramifies completely in $\mathbb{Q}\left(\xi_{p^{a}}\right)$. On the other hand p does not ramify in $\mathbb{Q}\left(\xi_{m^{\prime}}\right)$ so $[L: \mathbb{Q}]=1$, and we are done.
Theorem 16.6. For any m, the ring $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind.
Proof. Again, we use induction on the number of prime factors of m. If m is a prime power, we are done by Lemma 16.4. Now we treat the inductive step. Let \mathcal{M} be a prime in $\mathbb{Z}\left[\xi_{m}\right]$ and let $p \mathbb{Z}=\mathcal{M} \cap$ \mathbb{Z}. If p doesn't divide m, then \mathcal{M} is invertible, since p is prime to $\Delta\left(\mathbb{Z}\left[\xi_{m}\right] / \mathbb{Z}\right)$. Otherwise, write $m=m^{\prime} q^{a}$ where m^{\prime} is prime to q and $p \neq q$, and let $\mathcal{P}=\mathcal{M} \cap \mathbb{Z}\left[x i_{m^{\prime}}\right]$. Then $\mathbb{Z}\left[\xi_{m^{\prime}}\right]$ is Dedekind by induction and $\Delta\left(\mathbb{Z}\left[\xi_{m}\right] / \mathbb{Z}\left[\xi_{m^{\prime}}\right]\right)$ is prime to \mathcal{P}, so \mathcal{M} is invertible. Thus, $\mathbb{Z}\left[\xi_{m}\right]$ is Dedekind.

