
Math 568 Tom Tucker
Notes from Class 11/5

Lemma 16.1. Suppose that L is Galois over K. Let Q be maximal in
B with Q∩ A = P and let f = [B/Q : A/P ]. Then N(Q) = Pf .

Proof. Since we know that N(Q) is a power of P , it suffices to show that
AP N(Q) = Pf , which is equivalent to showing that N(S−1BQ) = Pf ,
where S = A \ P . We write

N(Q) = P`.
It suffices to show this for A = AP and B = S−1B. In this case, B
is a principal ideal domain and we may write Q = Bπ. Now, letting
G = Gal(L/K), we see that

BN(Q) = BN(Bπ) =
∏
σ∈G

Bσ(π) =
∏
σ∈G

σ(Q).

Letting Q1, . . . ,Qm be the distinct conjugates of Q, i.e. all the primes
of B lying over P , we see that

N(Q) = Qt11 · · · Qtmm ,

where the
m∑
i=1

ti = n. We also know that since N(Q) is a power of P ,

and

PB = Qe1 · · · Qem
for some positive integer e, all of the ti must equal e` for `. Thus, we
have m(e`) = n. On the other hand, we know that the relative degrees
[B/Qi : A/P ] are all equal to some fixed f , so we have

n =
m∑
i=1

ef = mef.

This gives mef = me`, so ` = f , as desired. �

Theorem 16.2. Let L be any finite separable extension of K and let
A and B be a usual. Let Q be maximal in B with Q ∩ A = P and let
f = [B/Qi : A/P ] = f . Then N(Q) = Pf .

Proof. Let M be the Galois closure of L over K. Let R be the integral
closure of B in M , which is also the integral closure of A in M . LetM
be a maximal ideal of R withM∩B = Q. From the previous Lemma,
we know that NM/L(M) = Q[R/M:B/Q]. By the previous Lemma and
transitivity of the norm, we know that

NL/K(Q[R/M:B/Q]) = NL/K(NM/L(M)) = NM/K(M) = P [R/M:A/P].
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Thus

NL/K(Q) = P
[R/M:A/P]
[R/M:B/Q] = Pf ,

where f = [B/Q : A/P ]. �

An easy application. Which positive numbers m can be written as
a2 + b2 for integers a and b?

Theorem 16.3. A positive integer m can be written as a2 + b2 for
integers a and b if and only if every prime p | m such that p ≡ 3
(mod 4) appears to an even power in the factorization of m.

Proof. Let B = Z[i]. Then N(a + bi) = a2 + b2, for a, b ∈ Z. Since B
is a principal ideal domain, a positive integer m = N(a + bi) for some
a+ bi ∈ B if and only if (m) = N(I) for some ideal I of Z. Recall that
from Problem 6 #4, we know that Show that Z[i]p factors as

Q2 ; if p = 2
Q1Q2 ; if p ≡ 1 (mod 4)
Q ; if p ≡ 3 (mod 4),

whereQ,Q1,Q2 are primes of Z[i] andQ1 6= Q2. It follows that there is
an ideal Qp of B such that N(Q) = Zp if and only if p is not congruent
to 3 mod 4. If p ≡ 3 (mod 4), then pB is the only prime lying over p
and N(pB) = (Zp)2. Factoring m as

m =
∏

p6≡3 (mod 4)
p|m

psi
∏

p≡3 (mod 4)
p|m

pti

Letting Qp be as above, we see that the ideal

I =
∏

p 6≡3 (mod 4)
p|m

Qspp
∏

p≡3 (mod 4)
p|m

(PB)
tp
2 .

Has the property that N(I) = Zm. On the other hand if I is any
ideal of B then Z(p) N(I) = (N(BpBI))2, for any p ≡ 1 (mod 4), so if
Zm = N(I), then tp is even. So we are done. �

Now, let’s begin working with cyclotomic fields. We say that ξm is a
primitive m-th root of unity if ξmm = 1 but ξdm 6= 1 for any d < m. We
define the m-th cyclotomic as

Φm(X) =
∏

0<i<m
gcd(i,m)=1

(X − ξim).

We will show that Φm(X) is irreducible for all m. Note that if m = pa

for p a prime then Φm(X+1) is Eistenstein so we know it is irreducible
already.
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Recall the definition:

φ(m) = #{i ∈ Z | 0 < i < m and gcd(i,m) = 1}
Then the degree of Φm is φ(m). Recall that φ(pa) = (pa− pa−1) and

that φ(m1m2) = φ(m1)φ(m2) if gcd(m1,m2) = 1.

Lemma 16.4. Let m = pa. Then:

(i) Z[ξm] is Dedekind;
(ii) p is the only prime that ramifies in Z[ξm];

(iii) pZ[ξm] = (ξm − 1)φ(m).

To see that Z[ξm] id Dedekind recall that p is the only prime that
divides ∆(Z[ξm]/Z) and that the prime lying over p takes the form
(p, ξm− 1) since Φm(X) is congruent to a (X − 1)φ(m) modulo p. Since
N(ξm − 1) = ±1, we see that (p, ξm − 1) = (ξm − 1) is principal and
therefore invertible. We just saw that p is the only prime that divides
∆(Z[ξm]/Z) so p is the only prime that can ramify in Z[ξm] and that
pZ[ξm] = (ξm − 1)φ(m) as desired.

Theorem 16.5. For any m, we have [Q(ξm) : Q] = φ(m). Thus, Φm

is irreducible.

Proof. We proceed by induction on the number of prime factors of m.
If m is a prime power then we are done since Φm is then Eistenstein.
Now, assume m has n prime factors for n > 1. We write m = m′pa.
Then by induction [Q(ξm′) : Q] = φ(m′) and [Q(ξpa) : Q] = φ(pa).
Since Q(ξm′) and Q(ξpa) are Galois, we will thus be done if we can
show that Q(ξm′)∩Q(ξpa) = Q. Write Q(ξm′)∩Q(ξpa) = L and let OL
denote the ring of integers of L. Then pOL = Q[L:Q] since p ramifies
completely in Q(ξpa). On the other hand p does not ramify in Q(ξm′)
so [L : Q] = 1, and we are done. �

Theorem 16.6. For any m, the ring Z[ξm] is Dedekind.

Proof. Again, we use induction on the number of prime factors of m.
If m is a prime power, we are done by Lemma 16.4. Now we treat
the inductive step. Let M be a prime in Z[ξm] and let pZ = M ∩
Z. If p doesn’t divide m, then M is invertible, since p is prime to
∆(Z[ξm]/Z). Otherwise, write m = m′qa where m′ is prime to q and
p 6= q, and let P =M∩Z[xim′ ]. Then Z[ξm′ ] is Dedekind by induction
and ∆(Z[ξm]/Z[ξm′ ]) is prime to P , so M is invertible. Thus, Z[ξm] is
Dedekind. �


