Math 568 Tom Tucker Notes from Class 11/5

Lemma 16.1. Suppose that L is Galois over K. Let \mathcal{Q} be maximal in B with $\mathcal{Q} \cap A = \mathcal{P}$ and let $f = [B/\mathcal{Q} : A/\mathcal{P}]$. Then $N(\mathcal{Q}) = \mathcal{P}^f$.

Proof. Since we know that $N(\mathcal{Q})$ is a power of \mathcal{P} , it suffices to show that $A_{\mathcal{P}} N(\mathcal{Q}) = \mathcal{P}^{f}$, which is equivalent to showing that $N(S^{-1}B\mathcal{Q}) = \mathcal{P}^{f}$, where $S = A \setminus \mathcal{P}$. We write

$$\mathcal{N}(\mathcal{Q}) = \mathcal{P}^{\ell}.$$

It suffices to show this for $A = A_{\mathcal{P}}$ and $B = S^{-1}B$. In this case, B is a principal ideal domain and we may write $\mathcal{Q} = B\pi$. Now, letting $G = \operatorname{Gal}(L/K)$, we see that

$$B \operatorname{N}(\mathcal{Q}) = B \operatorname{N}(B\pi) = \prod_{\sigma \in G} B\sigma(\pi) = \prod_{\sigma \in G} \sigma(\mathcal{Q}).$$

Letting $\mathcal{Q}_1, \ldots, \mathcal{Q}_m$ be the distinct conjugates of \mathcal{Q} , i.e. all the primes of B lying over \mathcal{P} , we see that

$$N(\mathcal{Q}) = \mathcal{Q}_1^{t_1} \cdots \mathcal{Q}_m^{t_m},$$

where the $\sum_{i=1}^{m} t_i = n$. We also know that since N(Q) is a power of \mathcal{P} , and

$$\mathcal{P}B=\mathcal{Q}_1^e\cdots\mathcal{Q}_m^e$$

for some positive integer e, all of the t_i must equal $e\ell$ for ℓ . Thus, we have $m(e\ell) = n$. On the other hand, we know that the relative degrees $[B/Q_i : A/\mathcal{P}]$ are all equal to some fixed f, so we have

$$n = \sum_{i=1}^{m} ef = mef$$

This gives $mef = me\ell$, so $\ell = f$, as desired.

Theorem 16.2. Let *L* be any finite separable extension of *K* and let *A* and *B* be a usual. Let \mathcal{Q} be maximal in *B* with $\mathcal{Q} \cap A = \mathcal{P}$ and let $f = [B/\mathcal{Q}_i : A/\mathcal{P}] = f$. Then $N(\mathcal{Q}) = \mathcal{P}^f$.

Proof. Let M be the Galois closure of L over K. Let R be the integral closure of B in M, which is also the integral closure of A in M. Let \mathcal{M} be a maximal ideal of R with $\mathcal{M} \cap B = \mathcal{Q}$. From the previous Lemma, we know that $N_{M/L}(\mathcal{M}) = \mathcal{Q}^{[R/\mathcal{M}:B/\mathcal{Q}]}$. By the previous Lemma and transitivity of the norm, we know that

$$N_{L/K}(\mathcal{Q}^{[R/\mathcal{M}:B/\mathcal{Q}]}) = N_{L/K}(N_{M/L}(\mathcal{M})) = N_{M/K}(\mathcal{M}) = \mathcal{P}^{[R/\mathcal{M}:A/\mathcal{P}]}.$$

Thus

 $\mathbf{2}$

$$N_{L/K}(\mathcal{Q}) = \mathcal{P}^{\frac{[R/\mathcal{M}:A/\mathcal{P}]}{[R/\mathcal{M}:B/\mathcal{Q}]}} = \mathcal{P}^{f}$$

where $f = [B/\mathcal{Q} : A/\mathcal{P}].$

An easy application. Which positive numbers m can be written as $a^2 + b^2$ for integers a and b?

Theorem 16.3. A positive integer m can be written as $a^2 + b^2$ for integers a and b if and only if every prime $p \mid m$ such that $p \equiv 3 \pmod{4}$ appears to an even power in the factorization of m.

Proof. Let $B = \mathbb{Z}[i]$. Then $N(a + bi) = a^2 + b^2$, for $a, b \in \mathbb{Z}$. Since B is a principal ideal domain, a positive integer m = N(a + bi) for some $a + bi \in B$ if and only if (m) = N(I) for some ideal I of Z. Recall that from Problem 6 #4, we know that Show that $\mathbb{Z}[i]p$ factors as

$$\begin{array}{ll} \mathcal{Q}^2 & ; & \text{if } p = 2 \\ \mathcal{Q}_1 \mathcal{Q}_2 & ; & \text{if } p \equiv 1 \pmod{4} \\ \mathcal{Q} & ; & \text{if } p \equiv 3 \pmod{4}, \end{array}$$

where $\mathcal{Q}, \mathcal{Q}_1, \mathcal{Q}_2$ are primes of $\mathbb{Z}[i]$ and $\mathcal{Q}_1 \neq \mathcal{Q}_2$. It follows that there is an ideal \mathcal{Q}_p of B such that $N(\mathcal{Q}) = \mathbb{Z}p$ if and only if p is not congruent to 3 mod 4. If $p \equiv 3 \pmod{4}$, then pB is the only prime lying over pand $N(pB) = (\mathbb{Z}p)^2$. Factoring m as

$$m = \prod_{\substack{p \not\equiv 3 \pmod{4}}} p^{s_i} \prod_{\substack{p \equiv 3 \ p \mid m}} p^{m} p^{t_i} p^{t_i}$$

Letting \mathcal{Q}_p be as above, we see that the ideal

$$I = \prod_{\substack{p \not\equiv 3 \pmod{4}}} \mathcal{Q}_p^{s_p} \prod_{\substack{p \equiv 3 \pmod{4} \\ p \mid m}} (\mathcal{P}B)^{\frac{t_p}{2}}$$

Has the property that $N(I) = \mathbb{Z}m$. On the other hand if I is any ideal of B then $\mathbb{Z}_{(p)} N(I) = (N(B_{pB}I))^2$, for any $p \equiv 1 \pmod{4}$, so if $\mathbb{Z}m = N(I)$, then t_p is even. So we are done.

Now, let's begin working with cyclotomic fields. We say that ξ_m is a primitive *m*-th root of unity if $\xi_m^m = 1$ but $\xi_m^d \neq 1$ for any d < m. We define the *m*-th cyclotomic as

$$\Phi_m(X) = \prod_{\substack{0 < i < m \\ \gcd(i,m) = 1}} (X - \xi_m^i).$$

We will show that $\Phi_m(X)$ is irreducible for all m. Note that if $m = p^a$ for p a prime then $\Phi_m(X+1)$ is Eistenstein so we know it is irreducible already.

Recall the definition:

$$\phi(m) = \#\{i \in \mathbb{Z} \mid 0 < i < m \text{ and } \gcd(i, m) = 1\}$$

Then the degree of Φ_m is $\phi(m)$. Recall that $\phi(p^a) = (p^a - p^{a-1})$ and that $\phi(m_1m_2) = \phi(m_1)\phi(m_2)$ if $gcd(m_1, m_2) = 1$.

Lemma 16.4. Let $m = p^a$. Then:

- (i) $\mathbb{Z}[\xi_m]$ is Dedekind;
- (ii) p is the only prime that ramifies in $\mathbb{Z}[\xi_m]$;
- (iii) $p\mathbb{Z}[\xi_m] = (\xi_m 1)^{\phi(m)}$.

To see that $\mathbb{Z}[\xi_m]$ id Dedekind recall that p is the only prime that divides $\Delta(\mathbb{Z}[\xi_m]/\mathbb{Z})$ and that the prime lying over p takes the form (p,ξ_m-1) since $\Phi_m(X)$ is congruent to a $(X-1)^{\phi(m)}$ modulo p. Since $N(\xi_m-1) = \pm 1$, we see that $(p,\xi_m-1) = (\xi_m-1)$ is principal and therefore invertible. We just saw that p is the only prime that divides $\Delta(\mathbb{Z}[\xi_m]/\mathbb{Z})$ so p is the only prime that can ramify in $\mathbb{Z}[\xi_m]$ and that $p\mathbb{Z}[\xi_m] = (\xi_m - 1)^{\phi(m)}$ as desired.

Theorem 16.5. For any m, we have $[\mathbb{Q}(\xi_m) : \mathbb{Q}] = \phi(m)$. Thus, Φ_m is irreducible.

Proof. We proceed by induction on the number of prime factors of m. If m is a prime power then we are done since Φ_m is then Eistenstein. Now, assume m has n prime factors for n > 1. We write $m = m'p^a$. Then by induction $[\mathbb{Q}(\xi_{m'}) : \mathbb{Q}] = \phi(m')$ and $[\mathbb{Q}(\xi_{p^a}) : \mathbb{Q}] = \phi(p^a)$. Since $\mathbb{Q}(\xi_{m'})$ and $\mathbb{Q}(\xi_{p^a})$ are Galois, we will thus be done if we can show that $\mathbb{Q}(\xi_{m'}) \cap \mathbb{Q}(\xi_{p^a}) = \mathbb{Q}$. Write $\mathbb{Q}(\xi_{m'}) \cap \mathbb{Q}(\xi_{p^a}) = L$ and let \mathcal{O}_L denote the ring of integers of L. Then $p\mathcal{O}_L = \mathcal{Q}^{[L:\mathbb{Q}]}$ since p ramifies completely in $\mathbb{Q}(\xi_{p^a})$. On the other hand p does not ramify in $\mathbb{Q}(\xi_{m'})$ so $[L:\mathbb{Q}] = 1$, and we are done. \square

Theorem 16.6. For any m, the ring $\mathbb{Z}[\xi_m]$ is Dedekind.

Proof. Again, we use induction on the number of prime factors of m. If m is a prime power, we are done by Lemma 16.4. Now we treat the inductive step. Let \mathcal{M} be a prime in $\mathbb{Z}[\xi_m]$ and let $p\mathbb{Z} = \mathcal{M} \cap$ \mathbb{Z} . If p doesn't divide m, then \mathcal{M} is invertible, since p is prime to $\Delta(\mathbb{Z}[\xi_m]/\mathbb{Z})$. Otherwise, write $m = m'q^a$ where m' is prime to q and $p \neq q$, and let $\mathcal{P} = \mathcal{M} \cap \mathbb{Z}[xi_{m'}]$. Then $\mathbb{Z}[\xi_{m'}]$ is Dedekind by induction and $\Delta(\mathbb{Z}[\xi_m]/\mathbb{Z}[\xi_{m'}])$ is prime to \mathcal{P} , so \mathcal{M} is invertible. Thus, $\mathbb{Z}[\xi_m]$ is Dedekind. \Box