Math 568 Tom Tucker
Notes from Class 11/5

Lemma 16.1. Suppose that L is Galois over K. Let Q be maximal in
B with QN A =P and let f = [B/Q: A/P]. Then N(Q) = P/.

Proof. Since we know that N(Q) is a power of P, it suffices to show that
ApN(Q) = P/, which is equivalent to showing that N(S~1BQ) = P/,
where S = A\ P. We write

N(Q) = P".

It suffices to show this for A = Ap and B = S~'B. In this case, B
is a principal ideal domain and we may write @ = Bw. Now, letting
G = Gal(L/K), we see that

BN(Q) = BN(Br) = [[ Bo(r) = [[ 0(Q).
oeG oceG
Letting Q;,..., 9,, be the distinct conjugates of Q, i.e. all the primes
of B lying over P, we see that

N(Q) = Q.

where the > t; = n. We also know that since N(Q) is a power of P,
i=1
and

PB = Q¢ Q"
for some positive integer e, all of the ¢; must equal e/ for £. Thus, we

have m(ef) = n. On the other hand, we know that the relative degrees
[B/Q; : A/P] are all equal to some fixed f, so we have

n= Z ef =mef.
i=1
This gives mef = mel, so £ = f, as desired. O

Theorem 16.2. Let L be any finite separable extension of K and let
A and B be a usual. Let Q be mazimal in B with QN A =P and let
f=1[B/Q;: A/P] = f. Then N(Q) = P/.

Proof. Let M be the Galois closure of L over K. Let R be the integral
closure of B in M, which is also the integral closure of A in M. Let M
be a maximal ideal of R with M N B = Q. From the previous Lemma,
we know that Ny (M) = QUE/MB/Ql By the previous Lemma and
transitivity of the norm, we know that

Niyw(QUEMHF) = Nipjie (Nagyp (M) = Nagyse (M) = PUAEATL,
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Thus
[R/M:A/P]

Np/x(Q) = Pl~MERl =Pl
where f = [B/Q: A/P]. -

An easy application. Which positive numbers m can be written as
a® + b? for integers a and b?

Theorem 16.3. A positive integer m can be written as a®> + b* for
integers a and b if and only if every prime p | m such that p = 3
(mod 4) appears to an even power in the factorization of m.

Proof. Let B = Zli]. Then N(a + bi) = a® + V?, for a,b € Z. Since B
is a principal ideal domain, a positive integer m = N(a + bi) for some
a+bi € B if and only if (m) = N(I) for some ideal I of Z. Recall that
from Problem 6 #4, we know that Show that Z[i|p factors as

Q* ; ifp=2

919, ; ifp=1 (mod4)

Q ; ifp=3 (mod4),
where Q, Q1, Qs are primes of Z[i] and Q1 # Q,. It follows that there is
an ideal @, of B such that N(Q) = Zp if and only if p is not congruent
to 3 mod 4. If p =3 (mod 4), then pB is the only prime lying over p
and N(pB) = (Zp)?. Factoring m as

m= 1] » [ »"

p#3  (mod 4) p=3 (mod 4)
plm plm

Letting Q, be as above, we see that the ideal

= [ <o I B>
p#3  (mod 4) p=3 (mod 4)
plm plm
Has the property that N(I) = Zm. On the other hand if I is any
ideal of B then Z,) N(I) = (N(B,pI))?, for any p = 1 (mod 4), so if
Zm = N(I), then t, is even. So we are done. O

Now, let’s begin working with cyclotomic fields. We say that &, is a
primitive m-th root of unity if €™ = 1 but €2 # 1 for any d < m. We
define the m-th cyclotomic as

e.(X)= ] X-¢€.).
0<i<m
ged(i,m)=1

We will show that ®,,(X) is irreducible for all m. Note that if m = p*

for p a prime then ®,,(X +1) is Eistenstein so we know it is irreducible
already.



Recall the definition:
dp(m)=#{i € Z|0<i<mand ged(i,m) =1}

Then the degree of ®,, is ¢(m). Recall that ¢(p*) = (p® — p*~!) and
that ¢(mimsg) = ¢(mq)p(ms) if ged(my, my) = 1.

Lemma 16.4. Let m = p®. Then:
(1) Z[&n) is Dedekind;
(ii) p is the only prime that ramifies in Z[&y,);
(iii) pZ[&m] = (€m —1)20™.

To see that Z[,,] id Dedekind recall that p is the only prime that
divides A(Z[¢,,]/Z) and that the prime lying over p takes the form
(p, & — 1) since @,,(X) is congruent to a (X — 1)%™ modulo p. Since
N(&, — 1) = £1, we see that (p,&, — 1) = (&, — 1) is principal and
therefore invertible. We just saw that p is the only prime that divides
A(Z|&,)/Z) so p is the only prime that can ramify in Z[¢,,] and that
pZ[&n] = (& — 1)°M) as desired.

Theorem 16.5. For any m, we have [Q(&,,) : Q] = ¢(m). Thus, @,
15 1rreducible.

Proof. We proceed by induction on the number of prime factors of m.
If m is a prime power then we are done since ®,, is then Eistenstein.
Now, assume m has n prime factors for n > 1. We write m = m/p®.
Then by induction [Q(&w) : Q] = 6(m') and [Q(&s) : Q) = o(p").
Since Q(&) and Q(&pe) are Galois, we will thus be done if we can
show that Q(&,,) NQ(&pe) = Q. Write Q(&,/) NQ(&pe) = L and let Oy,
denote the ring of integers of L. Then pO; = Q¥ since p ramifies
completely in Q(&pe). On the other hand p does not ramify in Q(&,,)
so [L: Q] =1, and we are done. O

Theorem 16.6. For any m, the ring Z[&,,] is Dedekind.

Proof. Again, we use induction on the number of prime factors of m.
If m is a prime power, we are done by Lemma 16.4. Now we treat
the inductive step. Let M be a prime in Z[,] and let pZ = M N
Z. If p doesn’t divide m, then M is invertible, since p is prime to
A(Z[¢n])7). Otherwise, write m = m/q® where m' is prime to ¢ and
p # q, and let P = MNZ[xi,|. Then Z[,] is Dedekind by induction
and A(Z[,,)/Z[&,yy]) is prime to P, so M is invertible. Thus, Z[,,] is
Dedekind. U



