Math 568 Tom Tucker
NOTES FROM CLASS 10/29
Last time, we had finished proving the following.
Corollary 14.1. Let \mathcal{P} be a prime of A. If $\Delta\left(B^{\prime} / A\right)$ is not contained in \mathcal{P}^{2}, then $S^{-1} B^{\prime}$ is integrally closed where $S=A \backslash \mathcal{P}$.

Let's develop a general technique for finding the integral closure of a Dedekind domain A.

I will start with two examples
Example 14.2. Let $A=\mathbb{Z}$ and let $B^{\prime}=A\left[\xi_{p^{n}}\right]$ where $\xi_{p^{n}}$ is a primitive p^{n}-th root of unity. The minimal monic for $\xi_{p^{n}}$ is $F(x)=x^{p^{n}-p^{n-1}}+$ $x^{p^{n}-2 p^{n-1}}+\cdots+1$. We have seen that $F(x+1)$ is Eistenstein and thus irreducible. Now, $\Delta(F)$ must divide the discriminant of $x^{p^{n}}-1$. Thus, p is the only prime that can divide $\Delta(F)$. Thus, we see that $B_{\mathcal{Q}}^{\prime}$ is integrally closed for any \mathcal{Q} such that $\mathcal{Q} \cap \mathbb{Z} \neq(p)$. Now, let's check the primes lying over p. We see that since $F(x) \equiv(x-1)^{p^{n}-p^{n-1}}$ $(\bmod p)$ that there is exactly one such prime and it is $\left(p, \xi_{p^{n}}-1\right)$. Since $\mathrm{N}\left(\xi_{p^{n}}-1\right)=p$, we see that p is in the ideal generated by $\left(\xi_{p^{n}}-1\right)$, so this ideal \mathcal{Q} is principal. Thus $B_{\mathcal{Q}}^{\prime}$ is integrally closed so B^{\prime} is integrally closed.

We are most interested in the case $A=\mathbb{Z}, K=\mathbb{Q}$, and L is a number field. Suppose we start with θ integral over \mathbb{Z} and such that $L=\mathbb{Q}(\theta)$. We want to find the integral closure \mathcal{O}_{L} (also called the ring of integers and the maximal order of L). Prop. 9.1 from the book gives some info on it.

First a lemma. Note that when working over \mathbb{Z}, we can (by abuse of notation) just take $\Delta\left(B^{\prime} / \mathbb{Z}\right)$ to be the positive number generating the ideal $\Delta\left(B^{\prime} / \mathbb{Z}\right)$.

Lemma 14.3. Let L be a finite extension of \mathbb{Q} and let B^{\prime} be an integral extension of \mathbb{Q} with field of fractions equal to L. Let \mathcal{O}_{L} denote the integral closure of \mathbb{Z} in L. Suppose that $\alpha \in \mathcal{O}_{L}$ has the property that $p^{n} \alpha \in B^{\prime}$ but $p^{j} \alpha \notin B^{\prime}$ for $j<n$. Then $p^{2 n} \mid \Delta\left(B^{\prime} / A\right) \Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)^{-1}$.

Proof. Let $B_{i}=B^{\prime}\left[p^{i} \alpha\right]$, so that we have a chain

$$
B_{n} \subset B_{n-1} \subset \cdots \subset B_{0}
$$

Then $B_{n}=B^{\prime}$ and $S^{-1} B_{i} \neq S^{-1} B_{i-1}$ for $i=1 \ldots n$ (where $S=$ $A \backslash \mathcal{P})$. Thus, we have $p^{2} \mid \Delta\left(B_{i} / B_{i-1}\right)$ for $i=1, \ldots n$. Thus, $p^{2 n}$ divides $\Delta\left(B^{\prime} / B_{0}\right)$. Since $B_{0} \subseteq \mathcal{O}_{L}$, the result follows.
(Prop. 9.1, p. 47)

Proposition 14.4. Let $L=\mathbb{Q}(\theta)$ for integral θ of degree n. Write $|\Delta(\mathbb{Z}[\theta] / \mathbb{Z})|=d m^{2}$, where d is square-free. Then the every element in the ring of integers \mathcal{O}_{L} has the form

$$
\frac{a_{0}+a_{1} \theta+\cdots+a_{n-1} \theta^{n-1}}{t}
$$

with

$$
\operatorname{gcd}\left(a_{0}, \ldots, a_{n-1}, t\right)=1, \text { and } t \mid m
$$

Proof. Let $B^{\prime}=\mathbb{Z}[\theta]$. Suppose that $\alpha \in L$ is in \mathcal{O}_{L}. We write

$$
\alpha=\frac{a_{0}+a_{1} \theta+\cdots+a_{n-1} \theta^{n-1}}{t}
$$

where $\operatorname{gcd}\left(a_{0}, \ldots, a_{n-1}, t\right)=1$. Write $t=p_{1}^{r_{1}} \ldots p_{s} r_{s}$. For each i, let $t_{i}=t / p^{r_{i}}$. Then $p^{r_{i}}\left(t_{i} \alpha\right) \in B^{\prime}$ but $p^{j}\left(t_{i} \alpha\right) \notin B^{\prime}$ for $j<r_{i}$. Thus, $p^{2 r_{i}}$ must divide $d m^{2}$, so $p^{r_{i}}$ must divide m, so t must divide m, as desired.

Remark 14.5 . It may very well be that $\mathbb{Z}[\theta]$ is already closed, so we may not have to allow any denominators at all not even denominators that divide m where $\Delta(\mathbb{Z}[\theta] / \mathbb{Z})=d m^{2}$ for. Look at $\mathbb{Z}[\sqrt[3]{5}]$, for example, which has discriminant $3^{3} 5^{2}$, but is integrally closed.

By the way, we can say a bit more. In fact, we have

$$
\left|\mathcal{O}_{L} / B^{\prime}\right|^{2}=\frac{\Delta\left(B^{\prime} / A\right)}{\Delta\left(\mathcal{O}_{L} / A\right)}
$$

where $\mathcal{O}_{L} / B^{\prime}$ is the additive group quotient of \mathcal{O}_{L} by B^{\prime}.
This requires a little more work to prove, but you can use this fact when you compute the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{19})$.

Now, to change gears slightly, let's prove a few facts about our usual set-up when we take Galois of field K. In what follows, A is Dedekind, K is its field of fractions, L is a finite Galois extension of K, and B is the integral closure of A in M.

