
Math 568 Tom Tucker
NOTES FROM CLASS 10/29

Last time, we had finished proving the following.

Corollary 14.1. Let P be a prime of A. If ∆(B′/A) is not contained
in P2, then S−1B′ is integrally closed where S = A \ P.

Let’s develop a general technique for finding the integral closure of
a Dedekind domain A.

I will start with two examples

Example 14.2. Let A = Z and let B′ = A[ξpn ] where ξpn is a primitive

pn-th root of unity. The minimal monic for ξpn is F (x) = xp
n−pn−1

+

xp
n−2pn−1

+ · · · + 1. We have seen that F (x + 1) is Eistenstein and
thus irreducible. Now, ∆(F ) must divide the discriminant of xp

n − 1.
Thus, p is the only prime that can divide ∆(F ). Thus, we see that
B′Q is integrally closed for any Q such that Q ∩ Z 6= (p). Now, let’s

check the primes lying over p. We see that since F (x) ≡ (x− 1)p
n−pn−1

(mod p) that there is exactly one such prime and it is (p, ξpn−1). Since
N(ξpn − 1) = p, we see that p is in the ideal generated by (ξpn − 1), so
this ideal Q is principal. Thus B′Q is integrally closed so B′ is integrally
closed.

We are most interested in the case A = Z, K = Q, and L is a number
field. Suppose we start with θ integral over Z and such that L = Q(θ).
We want to find the integral closure OL (also called the ring of integers
and the maximal order of L). Prop. 9.1 from the book gives some info
on it.

First a lemma. Note that when working over Z, we can (by abuse of
notation) just take ∆(B′/Z) to be the positive number generating the
ideal ∆(B′/Z).

Lemma 14.3. Let L be a finite extension of Q and let B′ be an integral
extension of Q with field of fractions equal to L. Let OL denote the
integral closure of Z in L. Suppose that α ∈ OL has the property that
pnα ∈ B′ but pjα /∈ B′ for j < n. Then p2n|∆(B′/A)∆(OL/Z)−1.

Proof. Let Bi = B′[piα], so that we have a chain

Bn ⊂ Bn−1 ⊂ · · · ⊂ B0.

Then Bn = B′ and S−1Bi 6= S−1Bi−1 for i = 1 . . . n (where S =
A\P). Thus, we have p2|∆(Bi/Bi−1) for i = 1, . . . n. Thus, p2n divides
∆(B′/B0). Since B0 ⊆ OL, the result follows. �

(Prop. 9.1, p. 47)
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Proposition 14.4. Let L = Q(θ) for integral θ of degree n. Write
|∆(Z[θ]/Z)| = dm2, where d is square-free. Then the every element in
the ring of integers OL has the form

a0 + a1θ + · · ·+ an−1θ
n−1

t
with

gcd(a0, . . . , an−1, t) = 1, and t | m

Proof. Let B′ = Z[θ]. Suppose that α ∈ L is in OL. We write

α =
a0 + a1θ + · · ·+ an−1θ

n−1

t
where gcd(a0, . . . , an−1, t) = 1. Write t = pr11 . . . psrs. For each i, let
ti = t/pri . Then pri(tiα) ∈ B′ but pj(tiα) /∈ B′ for j < ri. Thus, p2ri

must divide dm2, so pri must divide m, so t must divide m, as desired.
�

Remark 14.5. It may very well be that Z[θ] is already closed, so we may
not have to allow any denominators at all not even denominators that
divide m where ∆(Z[θ]/Z) = dm2 for. Look at Z[ 3

√
5], for example,

which has discriminant 3352, but is integrally closed.

By the way, we can say a bit more. In fact, we have

|OL/B
′|2 =

∆(B′/A)

∆(OL/A)

where OL/B
′ is the additive group quotient of OL by B′.

This requires a little more work to prove, but you can use this fact
when you compute the integral closure of Z in Q( 3

√
19).

Now, to change gears slightly, let’s prove a few facts about our usual
set-up when we take Galois of field K. In what follows, A is Dedekind,
K is its field of fractions, L is a finite Galois extension of K, and B is
the integral closure of A in M .


