Math 568 Tom Tucker

NOTES FROM CLASS 10/27/14
From last time, we have the following.
Corollary 13.1. For each prime \mathcal{P} of A, we have $A_{\mathcal{P}} \Delta\left(B^{\prime} / A\right)=$ $\Delta\left(S^{-1} B^{\prime} / A_{\mathcal{P}}\right)$, where $S=A \backslash \mathcal{P}$.

Thus, we can calculate the discriminant locally.
The trace also behaves well with respect to reduction. Whenever we have a finite integral extension of a field, we can define a trace. We'll apply that with the field $k=A / \mathcal{P}$ for a maximal ideal \mathcal{P} of A. Since this computation is local, we will work over $A_{\mathcal{P}}$ (which is a DVR). The following applies whenever B^{\prime} is a free A-module.

Lemma 13.2. Let A and B^{\prime} be as usual. Suppose that B^{\prime} is a free A module. Let \mathcal{P} be a nonzero prime of A, let $k=A / \mathcal{P} A$, let $C=B / \mathcal{P} B$, and let $\phi: B \longrightarrow C$ be the usual reduction map. Then for any $y \in B^{\prime}$, we have $\phi\left(T_{L / K}(y)\right)=T_{C / k}(\phi(y))$.

Proof. Let $\left\{w_{1}, \ldots, w_{n}\right\}$ be basis for B^{\prime} as an A-module. Then, letting \bar{w}_{i} denote $\phi\left(w_{i}\right)$, we see that $\left\{\bar{w}_{1}, \ldots, \bar{w}_{n}\right\}$ must generate C as a k vector space and thus must be a basis for C as a k-vector space.

Now, we are essentially done, since we can define the trace of any $y \in B^{\prime}$ with respect to this basis. We have

$$
y w_{i}=\sum_{j=1}^{n} m_{i j} w_{j}
$$

with $m_{i j} \in A$, and

$$
\phi(y) \bar{w}_{i}=\sum_{j=1}^{n} \phi\left(m_{i j}\right) \bar{w}_{j} .
$$

Hence,

$$
\phi\left(\mathrm{T}_{L / K}(y)\right)=\sum_{i=1}^{n} \phi\left(m_{i i}\right)=\mathrm{T}_{C / k}(\phi(y)) .
$$

We need one quick lemma from linear algebra.
Lemma 13.3. Let V be a vector space. Let $\phi: V \longrightarrow V$ be a linear map. Suppose that $\phi^{k}=0$ for some $k \geq 1$. Then the trace of ϕ is zero.

Proof. This is on your HW.

When B is the integral closure of A in L, and \mathcal{P} is maximal in A, we can write

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}}
$$

If $e_{i}>1$ for some i, then we say that \mathcal{P} ramifies in B. When $B=A[\alpha]$, we know that \mathcal{P} ramifies in B if and only if $\Delta(B / A) \subseteq \mathcal{P}$. That is true more generally.

We make one more assumption today: we assume that every residue field A / \mathcal{P}, for \mathcal{P} a nonzero prime, is perfect. That is, we assume that it has no inseparable extensions.

Theorem 13.4. Let B be the integral closure of A in L and let \mathcal{P} be maximal in A. Then \mathcal{P} ramifies in B if and only if $\Delta(B / A) \subseteq \mathcal{P}$.

Proof. It will suffice to prove this locally, that is to say, it will suffice to replace A with $A_{\mathcal{P}}$ and B with $S^{-1} B$ where $S=A \backslash \mathcal{P}$. Thus, we may assume that A is a DVR and that B is its integral closure in L.

Let w_{1}, \ldots, w_{n} be a basis for B over A. From the Lemma above we have $T_{L / K}\left(w_{i} w_{j}\right)=T_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)$, so the matrix $M=\left[\mathrm{T}_{C / k}\left(\bar{w}_{i} \bar{w}_{j}\right)\right]$ represents the form $(x, y)=T_{C / k}(x y)$ on C / k. We have $\operatorname{det} M=0$ (in $A / \mathcal{P})$ if and only if the form is degenerate, i.e. if and only if there is some nonzero x such that $T_{C / k}(x y)=0$ for all $y \in C$. Since $\operatorname{det} M$ is simly $\Delta(A / B)$, we we need only show then that the form is degenerate exactly when we have $e_{i}>1$ for some \mathcal{Q}_{i} in the factorization

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e_{1}} \ldots \mathcal{Q}_{m}^{e_{m}}
$$

Let us now decompose C / k as ring, we have

$$
C \cong B / \mathcal{P} B \cong \bigoplus_{i=1}^{m} B / \mathcal{Q}_{i}^{e_{i}}
$$

where

$$
\mathcal{P} B=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .
$$

If $e_{i}>1$, then any element $z \in C$ such that $z=0$ in every coordinate but i and has i-th coordinate in \mathcal{Q}_{i}, has the property that $z^{e_{i}}=0$. Thus, by your homework we must have $T_{C / k}(z)=0$ for all such z. Since the set of such elements forms a C-ideal this means that we have $T_{C / k}(z y)=0$ for all $y \in C$. Hence the pairing

$$
(x, y)=T_{C / k}(x y)
$$

on C is degenerate.
If $e_{i}=1$ for every i, then

$$
C \cong B / B \mathcal{Q}_{1} \oplus \cdots \oplus B / S^{-1} B \mathcal{Q}_{m}
$$

and B / \mathcal{Q}_{i} is separable over k for each i. The trace form $(x, y)=$ $\mathrm{T}_{C / k}(x y)$ decomposes into a sum of forms

$$
(a, b)=\mathrm{T}_{\left(B / \mathcal{Q}_{i}\right) / k}(a b),
$$

each of which is nondegenerate, so (x, y) is nondegenerate, so

$$
\operatorname{det}\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right] \notin \mathcal{P},
$$

and we are done.

Here is a simple and easy to prove fact comparing the discriminants of different subrings B and B^{\prime} of L

Corollary 13.5. Suppose that A is a $D V R$. Let $B^{\prime} \subset B$ with B^{\prime} and B as usual. Then

$$
\Delta(B / A)\left(\Delta\left(B^{\prime} / A\right)\right)^{-1}=\mathcal{P}^{2 r}
$$

with $r>0$ unless $B=B^{\prime}$.
Proof. This is on your homework.
Corollary 13.6. Let \mathcal{P} be a prime of A. If $\Delta\left(B^{\prime} / A\right)$ is not contained in \mathcal{P}^{2}, then $S^{-1} B^{\prime}$ is integrally closed where $S=A \backslash \mathcal{P}$.

Proof. Let B be the integral closure of A in the field of fractions of B. Then $\Delta\left(S^{-1} B / A_{\mathcal{P}}\right)$ must equal $\Delta\left(S^{-1} B^{\prime} / A_{\mathcal{P}}\right)$ by the Corollary above since $\Delta\left(S^{-1} B^{\prime} / A\right)$ does not contain $A_{\mathcal{P}} \mathcal{P}^{2}$. Thus, $S^{-1} B^{\prime}=S^{-1} B$, so $S^{-1} B^{\prime}$ is integrally closed.

