Math 568 Tom Tucker

NOTES FROM CLASS 10/22/14
For the rest of class, A is Dedekind with field of fractions K, the field L is a finite separable extension of K of degree n, and B^{\prime} is a subring of L that is integral over A. We will also assume that for every maximal ideal \mathcal{P} of A.

We'll begin with a definition that works when B^{\prime} is a free A-module, i.e. when B^{\prime} is isomorphic as an A-module to A^{n}, where $n=[L: K]$. In this case, we choose a basis w_{1}, \ldots, w_{n} for B^{\prime} over A and we let M be the matrix $\left[m_{i j}\right]$ where $m_{i j}=\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)$. Then we define

$$
\begin{equation*}
\Delta\left(B^{\prime}\right)=\operatorname{det} M \tag{1}
\end{equation*}
$$

How do we know that this agrees with our earlier definition in the case $B^{\prime}=A[\alpha]$? In fact, it more or less follows from some earlier work we did. Recall that in this case, we can choose the basis $1, \alpha, \ldots, \alpha^{n-1}$, so that $\left[m_{i j}\right]=\left[\mathrm{T}_{L / K}\left(\alpha^{i+j-2}\right)\right]$, which we recall is equal to

$$
\sum_{\ell=1}^{n} \alpha_{\ell}^{i+j-2}
$$

As we saw earlier, letting N be the van der Monde matrix

$$
\left(\begin{array}{lll}
1 & \cdots & 1 \\
\alpha_{1} & \cdots & \alpha_{n} \\
\cdots & \cdots & \cdots \\
\alpha_{1}^{n-1} & \cdots & \alpha_{n}^{n-1}
\end{array}\right)
$$

we have $N N^{t}=M$, so

$$
\operatorname{det} M=(\operatorname{det} N)^{2}=\prod_{i<j}\left(\alpha_{i}-\alpha_{j}\right)^{2}
$$

which is the same as $\Delta(\alpha)$, so our definitions agree.
Not all B^{\prime} will be free A-modules, however, so we have the more general definition below.

Definition 12.1. With notation as above $\Delta\left(B^{\prime} / A\right)$ is defined to be ideal generated by the determinants of all matrices $M=\left[\mathrm{T}_{L / K}\left(w_{i} w_{j}\right)\right]$ as w_{1}, \ldots, w_{n} range over all bases for L consisting of elements contained in B^{\prime}.

To see that this definition agrees with our earlier definition for when B^{\prime} is a free A-module. The following lemma will be on your homework.

Lemma 12.2. Suppose that $B^{\prime}=A v_{1}+\ldots A v_{n}$ where $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis for L over K. Then for other basis $W=\left\{w_{1}, \ldots, w_{n}\right\}$ for L
over K with $W \subseteq B$, we have

$$
\operatorname{det}\left[T_{L / K}\left(w_{i} w_{j}\right)\right]_{i, j}=a^{2} \operatorname{det}\left[T_{L / K}\left(v_{i} v_{j}\right)\right]_{i, j}
$$

for some $a \in A$.
Proof. This will be on the homework.
Example 12.3. The reason that we need to talk about the discriminant relative to A is that B^{\prime} could be defined over two different Dedekind domains. For example, we could take $B^{\prime}=\mathbb{Z}[\sqrt{3}, \sqrt{7}]$ which is an extension of \mathbb{Z} as well as of $\mathbb{Z}[\sqrt{3}]$ and $\mathbb{Z}[\sqrt{7}]$. The various discriminants $\Delta\left(B^{\prime} / \mathbb{Z}\right), \Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{3}]\right)$, and $\Delta\left(B^{\prime} / \mathbb{Z}[\sqrt{7}]\right)$ may all be different.

One nice fact about discriminants is that they can be computed locally. We have the following.

Proposition 12.4. With notation as throughout lecture, let S be a multiplicative subset of A not containing 0 . Then

$$
S^{-1} A \Delta\left(B^{\prime} / A\right)=\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)
$$

Proof. Since any basis with elements in B^{\prime} is also in $S^{-1} B^{\prime}$, it is obvious that

$$
S^{-1} A \Delta\left(B^{\prime} / A\right) \subseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)
$$

Similarly, given a basis v_{1}, \ldots, v_{n} for L / K contained in $S^{-1} B^{\prime}$, see that the basis w_{1}, \ldots, w_{n} where $w_{i}=s v_{i}$ is contained in B^{\prime} for some $s \in S$. Now

$$
\operatorname{det}\left(T_{L / K}\left(w_{i} w_{j}\right)\right)=s^{2 n} \operatorname{det}\left(T_{L / K}\left(v_{i} v_{j}\right)\right)
$$

so $S^{-1} A \Delta\left(B^{\prime} / A\right) \supseteq \Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$.
We know that $\Delta\left(B^{\prime} / A\right)$ is an ideal I. If $I=\prod_{i=1}^{m} \mathcal{P}_{i}^{e_{i}}$, then $A_{\mathcal{P}_{i}} I=\mathcal{P}_{i}^{e_{i}}$, so to figure out what $\Delta\left(B^{\prime} / A\right)$ is, all we have to do is figure out what $\Delta\left(S^{-1} B^{\prime} / S^{-1} A\right)$ is for $S=A \backslash \mathcal{P}$.

