
Math 568 Tom Tucker
NOTES FROM CLASS 10/15

We want to work towards calculating the integral closure of a Dedekind
domain in a finite separable extension.

Let’s begin with the following Lemma, the proof of which is obvious.

Lemma 10.1. Let I be an ideal in Dedekind domain. Write

I = Qe1
1 · · · Qem

m

where the Qi are distinct primes. Then

ei = min{t | MQi
(Qi)

t ⊆ MQi
I}.

Proposition 10.2. Let A be Dedekind. Let P be a maximal ideal of A
and let α be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for α over
A and that the reduction mod P of G, which we call Ḡ factors as

Ḡ = ḡt1
1 · · · ḡtm

m ,

with the ḡi distinct, irreducible, and monic. Then choosing monic gi ∈
A[x] such that gi ≡ ḡi (mod P), we have

(1) Qi = A[α](gi(α),P) is a prime for each i; and
(2) ti is the smallest positive integer such that

A[α]Qi
(Qi)

ti ⊆ A[α]Qi
P .

Proof. The proof is quite simple. Note that A[α] is isomorphic to
A[x]/G(x). We work in the ring A[α]/PA[α] ∼= A[x]/(G(x),P), which
is isomorphic to

(A/P)/(Ḡ(x)) ∼=
m∑

i=1

(A/P)[x]/ḡi(x)ti .

Since ḡi(x) is irreducible in (A/P)[x]), we see that

(A/P)[x]/ḡi(x)

is a field, so Qi is prime ideal since

A[α]/Qi
∼= (A/P)[x]/ḡi(x).

Now, since each gj(α) is a unit in A[α]Qi
for j 6= i, we have

A[α]Qi
/A[α]Qi

P ∼= (A/P)[x]/ḡi(x)ti ,

so ti is the smallest integer such that

gi(α)ti ⊆ A[α]Qi
P .
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Corollary 10.3. (Kummer) With notation as above, if A[α] is Dedekind,
then

A[α]P = Qe1
1 · · · Qem

m .

Proof. Immediate from the lemma and proposition above. �

We will also want to deal with rings that are not Dedekind domains.
Frequently, we will want to take rings of the form A[α] and try to decide
whether or not they are in fact Dedekind. Here’s a useful fact.

Proposition 10.4. With notation as above, if ti = 1 then the prime
A[α](P , gi(α)) is invertible. If ti > 1, then Qi is invertible if and only
if all the coefficients of the remainder mod gi of G are in P2, i.e. if
writing

(1) G(x) = q(x)gi(x) + r(x),

we have r(x) ∈ P2[x]

Proof. For each j, select a monic polynomial gj ∈ A[x] such that gj ≡ gj

(mod P). Since

g1(x)t1 · · · gm(x)tm ≡ f(x) (mod P)

it is clear that

(2) g1(α)t1 · · · gm(α)tm ∈ P ,

since α is a root of f . Furthermore, we know that for j 6= i, we must
have that gi(α) and gj(α) are coprime. Now, suppose that ti = 1 for
some i; let Qi = A[α](gi(α),P). When we localize at Qi, all of the
gj(α) for which j 6= i become units. Thus, (2) has the form gi(α)u ∈ P
for u a unit, so gi(α) ⊂ A[α]P . We know that there exists a π ∈ A
such that AP = APπ since P is invertible in A. Then

A[α]Qi
(gi(α),P) = A[x]Qi

π

so Qi is invertible.
Now suppose that mi > 1. Let φ : AP [x] −→ AP [α] be the natural

quotient map obtained by sending x to α. The kernel of this map is
AP [x]G. The prime Qi in AP [α] is generated by (π, gi(α)), so φ−1(Q) is
generated by (π, gi(x)) since G(x) is in the ideal generated by (π, gi(x))
(since gi(x) divides G modulo P). Denote φ−1(Q) as J . It is easy to
see that

dimAP/APP J/J2 = 2d

where d is the degree of gi since

{π, πx, . . . , πxd−1, gi, gix, . . . , gix
d−1}
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is a basis for J/J2 as a AP/APP-module. We see that φ induces a map

φ̃ : J/J2 −→ Qi/Q2
i

which has kernel AP [x]G(x) (mod J2). From (1), this is generated by
the remainder r(x). Here we use the fact q(x) ∈ J ; this follows from
the fact that ti > 1 so q(x) is divisible by gi(x) modulo P , which means
that q(x) ∈ AP [x](P , gi(x)).

Now, since deg r < deg g, we have r ∈ J2 if and only if r ∈ π2AP [x].
Thus, we see that

dimAP/APP(Qi/Q2
i ) < 2d

if and only if r /∈ π2AP [x]. Since

dimAP/APP(Qi/Q2
i ) = d dimA[α]Qi

/A[α]Qi
Qi

(Qi/Q2
i )

we thus have
dimAP/APP(Qi/Q2

i ) = 1

if and only if r /∈ π2AP [x].
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