Math 568 Tom Tucker
NOTES FROM CLASS 10/15

We want to work towards calculating the integral closure of a Dedekind
domain in a finite separable extension.
Let’s begin with the following Lemma, the proof of which is obvious.

Lemma 10.1. Let I be an ideal in Dedekind domain. Write
I=0Qf--- o
where the Q; are distinct primes. Then
e; = min{t | Mg,(Q;)" C Mo,I}.

Proposition 10.2. Let A be Dedekind. Let P be a mazximal ideal of A
and let o be an integral element of a finite separable extension of the
field of fractions of A. Suppose that G is the minimal monic for o over
A and that the reduction mod P of G, which we call G factors as
G=gi" gm

with the g; distinct, irreducible, and monic. Then choosing monic g; €
Alx] such that g; = g; (mod P), we have

(1) Q; = Ala)(gi(a), P) is a prime for each i; and

(2) t; is the smallest positive integer such that

Ala]o,(Q:)" C Ala]o, P

Proof. The proof is quite simple. Note that A[a] is isomorphic to
Alz]/G(z). We work in the ring Ala]/PA[a] = Alz]/(G(z), P), which
is isomorphic to

(A/P)/(G(x)) =Y (A/P)[z]/gi(x

=1

Since g;(z) is irreducible in (A/P)[x]), we see that
(A/P)[x]/gi(x)
is a field, so Q; is prime ideal since
Ala]/Q; = (A/P)[x]/gi(x).
Now, since each g;(«) is a unit in Afa]g, for j # i, we have
Alalo, /Ala]o,P = (A/P)[a]/gi(x)",
so t; is the smallest integer such that
gi(a)" € Alalo,P.
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Corollary 10.3. (Kummer) With notation as above, if A[a] is Dedekind,
then

Ala]P = Qft--- Q.
Proof. Immediate from the lemma and proposition above. U

We will also want to deal with rings that are not Dedekind domains.
Frequently, we will want to take rings of the form A[a] and try to decide
whether or not they are in fact Dedekind. Here’s a useful fact.

Proposition 10.4. With notation as above, if t; = 1 then the prime
Ala](P, gi(«)) is invertible. If t; > 1, then Q; is invertible if and only
if all the coefficients of the remainder mod g; of G are in P?, i.e. if
writing

(1) G(z) = q(x)gi(x) + r(w),
we have r(x) € P?[z]

Proof. For each j, select a monic polynomial g; € A[z] such that g; = g;
(mod P). Since

g1 (@)™ - gm(2)' = f(z)  (mod P)

it is clear that

(2) g1(@)" -+ gm(a)' € P,

since « is a root of f. Furthermore, we know that for j # 7, we must
have that g;(«) and g¢;(«) are coprime. Now, suppose that ¢; = 1 for
some 7; let Q; = Ala(g;(c),P). When we localize at Q;, all of the
gj(c) for which j # ¢ become units. Thus, (2) has the form g;(a)u € P
for w a unit, so g;(o) C A[a]P. We know that there exists a 7 € A
such that Ap = Apm since P is invertible in A. Then

Alalg,(gi(), P) = Alzlg,m
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so Q; is invertible.

Now suppose that m; > 1. Let ¢ : Ap[z] — Ap[a] be the natural
quotient map obtained by sending x to a. The kernel of this map is
Ap[z]G. The prime Q; in Apla] is generated by (7, gi(a)), so ¢~1(Q) is
generated by (7, ¢;(x)) since G(x) is in the ideal generated by (m, g;(z))
(since g;(x) divides G modulo P). Denote ¢~'(Q) as J. It is easy to
see that

dimAp/App J/J2 =2d
where d is the degree of g; since

d—1 d—1
{m,mx, ..., 7z " g, gixy ..., gt}
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is a basis for J/J? as a Ap/ApP-module. We see that ¢ induces a map
¢:J/JF — Qi/QF

which has kernel Ap[x]G(z) (mod J?). From (1), this is generated by
the remainder r(x). Here we use the fact ¢(x) € J; this follows from
the fact that ¢; > 1 so g(z) is divisible by g¢;(z) modulo P, which means
that ¢(x) € Ap[x](P, gi(x)).

Now, since degr < deg g, we have r € J? if and only if r € T2Ap[x].
Thus, we see that

dima,;a,p(Qi/ Q) < 2d
if and only if r ¢ 72 Ap|x]. Since
dima, a,p(Qi/ QF) = ddimagg /a,0]0,0,(Qi/ QF)
we thus have
dima,/4,p(Qi/Q7) = 1
if and only if r ¢ w2 Ap|[x].



