Math 568 Tom Tucker
 NOTES FROM CLASS 10/15

We want to work towards calculating the integral closure of a Dedekind domain in a finite separable extension.

Let's begin with the following Lemma, the proof of which is obvious.
Lemma 10.1. Let I be an ideal in Dedekind domain. Write

$$
I=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}}
$$

where the \mathcal{Q}_{i} are distinct primes. Then

$$
e_{i}=\min \left\{t \mid M_{\mathcal{Q}_{i}}\left(\mathcal{Q}_{i}\right)^{t} \subseteq M_{\mathcal{Q}_{i}} I\right\}
$$

Proposition 10.2. Let A be Dedekind. Let \mathcal{P} be a maximal ideal of A and let α be an integral element of a finite separable extension of the field of fractions of A. Suppose that G is the minimal monic for α over A and that the reduction mod \mathcal{P} of G, which we call \bar{G} factors as

$$
\bar{G}=\bar{g}_{1}^{t_{1}} \cdots \bar{g}_{m}^{t_{m}}
$$

with the \bar{g}_{i} distinct, irreducible, and monic. Then choosing monic $g_{i} \in$ $A[x]$ such that $g_{i} \equiv \bar{g}_{i}(\bmod \mathcal{P})$, we have
(1) $\mathcal{Q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathcal{P}\right)$ is a prime for each i; and
(2) t_{i} is the smallest positive integer such that

$$
A[\alpha]_{\mathcal{Q}_{i}}\left(\mathcal{Q}_{i}\right)^{t_{i}} \subseteq A[\alpha]_{\mathcal{Q}_{i}} \mathcal{P} .
$$

Proof. The proof is quite simple. Note that $A[\alpha]$ is isomorphic to $A[x] / G(x)$. We work in the ring $A[\alpha] / \mathcal{P} A[\alpha] \cong A[x] /(G(x), \mathcal{P})$, which is isomorphic to

$$
(A / \mathcal{P}) /(\bar{G}(x)) \cong \sum_{i=1}^{m}(A / \mathcal{P})[x] / \bar{g}_{i}(x)^{t_{i}} .
$$

Since $\bar{g}_{i}(x)$ is irreducible in $\left.(A / \mathcal{P})[x]\right)$, we see that

$$
(A / \mathcal{P})[x] / \bar{g}_{i}(x)
$$

is a field, so \mathcal{Q}_{i} is prime ideal since

$$
A[\alpha] / \mathcal{Q}_{i} \cong(A / \mathcal{P})[x] / \bar{g}_{i}(x) .
$$

Now, since each $g_{j}(\alpha)$ is a unit in $A[\alpha]_{\mathcal{Q}_{i}}$ for $j \neq i$, we have

$$
A[\alpha]_{\mathcal{Q}_{i}} / A[\alpha]_{\mathcal{Q}_{i}} \mathcal{P} \cong(A / \mathcal{P})[x] / \bar{g}_{i}(x)^{t_{i}},
$$

so t_{i} is the smallest integer such that

$$
g_{i}(\alpha)^{t_{i}} \subseteq A[\alpha]_{\mathcal{Q}_{i}} \mathcal{P} .
$$

Corollary 10.3. (Kummer) With notation as above, if $A[\alpha]$ is Dedekind, then

$$
A[\alpha] \mathcal{P}=\mathcal{Q}_{1}^{e_{1}} \cdots \mathcal{Q}_{m}^{e_{m}} .
$$

Proof. Immediate from the lemma and proposition above.
We will also want to deal with rings that are not Dedekind domains. Frequently, we will want to take rings of the form $A[\alpha]$ and try to decide whether or not they are in fact Dedekind. Here's a useful fact.

Proposition 10.4. With notation as above, if $t_{i}=1$ then the prime $A[\alpha]\left(\mathcal{P}, g_{i}(\alpha)\right)$ is invertible. If $t_{i}>1$, then \mathcal{Q}_{i} is invertible if and only if all the coefficients of the remainder mod g_{i} of G are in \mathcal{P}^{2}, i.e. if writing

$$
\begin{equation*}
G(x)=q(x) g_{i}(x)+r(x), \tag{1}
\end{equation*}
$$

we have $r(x) \in \mathcal{P}^{2}[x]$
Proof. For each j, select a monic polynomial $g_{j} \in A[x]$ such that $g_{j} \equiv g_{j}$ $(\bmod \mathcal{P})$. Since

$$
g_{1}(x)^{t_{1}} \cdots g_{m}(x)^{t_{m}} \equiv f(x) \quad(\bmod \mathcal{P})
$$

it is clear that

$$
\begin{equation*}
g_{1}(\alpha)^{t_{1}} \cdots g_{m}(\alpha)^{t_{m}} \in \mathcal{P} \tag{2}
\end{equation*}
$$

since α is a root of f. Furthermore, we know that for $j \neq i$, we must have that $g_{i}(\alpha)$ and $g_{j}(\alpha)$ are coprime. Now, suppose that $t_{i}=1$ for some i; let $\mathcal{Q}_{i}=A[\alpha]\left(g_{i}(\alpha), \mathcal{P}\right)$. When we localize at \mathcal{Q}_{i}, all of the $g_{j}(\alpha)$ for which $j \neq i$ become units. Thus, (2) has the form $g_{i}(\alpha) u \in \mathcal{P}$ for u a unit, so $g_{i}(\alpha) \subset A[\alpha] \mathcal{P}$. We know that there exists a $\pi \in A$ such that $A_{\mathcal{P}}=A_{\mathcal{P}} \pi$ since \mathcal{P} is invertible in A. Then

$$
A[\alpha]_{\mathcal{Q}_{i}}\left(g_{i}(\alpha), \mathcal{P}\right)=A[x]_{\mathcal{Q}_{i}} \pi
$$

so \mathcal{Q}_{i} is invertible.
Now suppose that $m_{i}>1$. Let $\phi: A_{\mathcal{P}}[x] \longrightarrow A_{\mathcal{P}}[\alpha]$ be the natural quotient map obtained by sending x to α. The kernel of this map is $A_{\mathcal{P}}[x] G$. The prime \mathcal{Q}_{i} in $A_{\mathcal{P}}[\alpha]$ is generated by $\left(\pi, g_{i}(\alpha)\right)$, so $\phi^{-1}(\mathcal{Q})$ is generated by $\left(\pi, g_{i}(x)\right)$ since $G(x)$ is in the ideal generated by $\left(\pi, g_{i}(x)\right)$ (since $g_{i}(x)$ divides G modulo \mathcal{P}). Denote $\phi^{-1}(\mathcal{Q})$ as J. It is easy to see that

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}} J / J^{2}=2 d
$$

where d is the degree of g_{i} since

$$
\left\{\pi, \pi x, \ldots, \pi x^{d-1}, g_{i}, g_{i} x, \ldots, g_{i} x^{d-1}\right\}
$$

is a basis for J / J^{2} as a $A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}$-module. We see that ϕ induces a map

$$
\tilde{\phi}: J / J^{2} \longrightarrow \mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}
$$

which has kernel $A_{\mathcal{P}}[x] G(x)\left(\bmod J^{2}\right)$. From (1), this is generated by the remainder $r(x)$. Here we use the fact $q(x) \in J$; this follows from the fact that $t_{i}>1$ so $q(x)$ is divisible by $g_{i}(x)$ modulo \mathcal{P}, which means that $q(x) \in A_{\mathcal{P}}[x]\left(\mathcal{P}, g_{i}(x)\right)$.

Now, since $\operatorname{deg} r<\operatorname{deg} g$, we have $r \in J^{2}$ if and only if $r \in \pi^{2} A_{\mathcal{P}}[x]$. Thus, we see that

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)<2 d
$$

if and only if $r \notin \pi^{2} A_{\mathcal{P}}[x]$. Since

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)=d \operatorname{dim}_{\left.A[\alpha]_{\mathcal{Q}_{i}} / A_{[\alpha} \alpha\right]_{\mathcal{Q}_{i}} \mathcal{Q}_{i}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)
$$

we thus have

$$
\operatorname{dim}_{A_{\mathcal{P}} / A_{\mathcal{P}} \mathcal{P}}\left(\mathcal{Q}_{i} / \mathcal{Q}_{i}^{2}\right)=1
$$

if and only if $r \notin \pi^{2} A_{\mathcal{P}}[x]$.

