Math 568
Notes from Class 10/08

We were proving the following:

Theorem 9.1. Let L O K be a finite extension of fields. Then the
bilinear form (x,y) = Tp/k(xy) is nondegenerate < L is separable
over K.

Proof. (=) We did last time.
(<) We will denote Ty k(xy) as (z,y). Recall the following: Choos-
ing a basis mq,...,m, and writing x and y as vectors in terms of the

m; we can write

xAy”

for some matrix A. The matrix A is given by [a;;] where a;; = (m;, m;)
since we want

n n n n
(Z ria;, Z sjaj) = Z Z TZ‘Sj (ai, (lj).
=1 7j=1 =1 j=1

It is easy to see that that the form will be nondegenerate if and only if
A is invertible, since Ay = 0 if and only (z,y) = 0 for every y € L.

Now, since L is separable over K, we can write L = K(0) for 6 € L
and use 1,0,...,0" ! as a basis for L over K. Then we can write the
matrix A = [a;;] with above with

aij = (Qi—179j—1) — TL/K(€i+j_2).

It isn’t too hard to calculate these coefficients explicitly. In fact, if
f1,...,0, are the roots of the minimal polynomial of 8, then

Tpx(0) =0,
=1
from what we proved earlier. Similarly, we have
= T 0572 = 392
=1

There is a trick to finding the determinant of such a matrix. Recall the
van der Monde matrix in V := V(6,,...,60,). It is the matrix



2

The determinant of this matrix is
det(V) = [J(0: - 0;).
i<j

It is easy to check that VVT = A (a messy but easy calculation). Thus,

det(A) = det(V) det(VT) = det(V)? = (H(ei - @)) #0,

1<j

since 6; # 0; for ¢ # j and we are done.

The following Corollary is now immediate.

Corollary 9.2. Let A be a Dedekind domain and let B be the integral
closure of A in a finite separable extension of the field of fractions of A.
Then B is a finitely generate A-module. In particular, B is Noetherian.

Proposition 9.3. Let A be a domain, A # 0, and let B be integral
over A. Then for any prime P of A, we have BP # 1.

Proof. Suppose that BP = 1. Then there are x4, ..., z,, € A such that
b1$1++bm$m: 1.

Let C' = Alby, ..., by]. Then C is finitely generated as an A-module and
PC = 1. Let N = ApC’; then N is finitely generated and ApPN = N.
Since Ap is local, we must have N = 0 by Nakayama’s lemma, which
gives a contradiction, since A # 0. O

Let’s fix our notation for the rest of the day: A is Dedekind with
field of fractions K, L O K is a finite separable field extension of degree
n, and B is the integral closure of A in L. Sometimes, we will impose
additional restrictions on A.

Corollary 9.4. If A is a principal ideal domain and [L : K| =n for L
a separable extension of K, the field of fractions of A, then the integral
closure of A in L is isomorphic to A™ as an A-module.

Proof. If A is a principal ideal domain, then any finitely generated
torsion-free A-module is a free module. In the proof of the theorem
above, we saw that there is a free module of rank n, call it M such that
M c B c M'. Since MT is also of rank n, we see that the rank of B
must be n. 0

One more thing [ wanted to mention about factorizations of ideals in
Dedekind domains. If I C P, then P must appear in the factorization
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of I. This follows from the fact that Rpl is positive power of RpP,
which would not happen if I didn’t have P in its factorization.

Let us continue with the set-up: A a Dedekind ring, K field of
fractions of A, L a finite separable extension of K, and B the integral
closure of Ain L. We'll have n = [L : K|. Say we have a prime P C A.
What can we say about how BP factors?

Let’s start with some basics. We write

BP = Q' --- Q.

The number e; is called the ramification degree of Q; over P. There’s
another number associated with Q; over P as well. Recall that we have
an injection of fields

We call the index [B/Q; : A/P] the relative degree of Q, over P. It
isn’t hard to see that f; is finite and in fact f; < [L : K]. We'll prove
something more general along these lines in a bit. First, let’s look at
some examples...

Example 9.5. Let A = Z and B = Z[v/2]. Let’s look at some factor-
izations of Bp into primes in p for various p.

(1) 2B = (vV2)2.

(2) 3B is a prime.

(3) 7B = (V2 -3)(vV2 +3).
Theorem 9.6. With the set-up above, for P a maximal ideal of A we
have

BP = Q-9
and f; = [B/Q; : A/P] with

m

Z eifi = n.

i=1

Proof. We know that
B/BP =Y B/Q
i=1

by the Chinese remainder theorem. Now, let S = A\ P. Then from
above, S™!B is the integral closure of Ap in L. Hence, it is isomorphic
to A% as an Ap module. It follows that S~'B/S™!'BP is a Ap /P vector
space of dimension n. Moreover, since S N Q; is empty for each Q;, we
see that S™1BQ, is a prime in S~'B and we have

ST'BP =S"'BQ ... Q.
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Combining this with homework results plus further localization, we
obtain

ST'B/ST'BP =Y (ST'B)/(ST'BQY) = ) Bo,/(Bo,QF).
i=1 =1
Thus, we see that

dima,/a,p(> Bo,/(Bo, Q")) = n.
i=1
It will suffice to show, then, that

dim( Ap/ApP)(Y | Bo,/(Bo, Q) = ) _eifi,
i=1 i=1

which would follow from

dim(AP/APP)<BQi/(BQi Q7)) = eifi.
Since we can write
0= Bo Qi /(Bo, Q") C (Bo,Qf")/(Bg,) Q" " C -+ C Bo,/(Bg,Q5"),
we need only show that

dima,/p((Bo, @)/ (Bo, Q™)) = fi,
for any j > 0. Note that since Bg, is a DVR, its its maximal ideal is
generated by a single element 7. It follows that each power Bg, Q7 is
generated by 7/ and that (Bg,Q?)/(Bg, @/™") is therefore a 1-dimensional
Bg,/Bg, Qi vector space. Since B/Q; is an f; dimensional A/P-vector
space, it follows that (Bg,Q)/(Bo,Q’") is an f;-dimensional A/P
vector space and we are done. O



