Math 568 Notes from Class 10/08

We were proving the following:

Theorem 9.1. Let $L \supseteq K$ be a finite extension of fields. Then the bilinear form $(x, y) = T_{L/K}(xy)$ is nondegenerate $\Leftrightarrow L$ is separable over K.

Proof. (\Rightarrow) We did last time.

 (\Leftarrow) We will denote $T_{L/K}(xy)$ as (x, y). Recall the following: Choosing a basis m_1, \ldots, m_n and writing x and y as vectors in terms of the m_i we can write

 $\mathbf{x}A\mathbf{y}^T$

for some matrix A. The matrix A is given by $[a_{ij}]$ where $a_{ij} = (m_i, m_j)$ since we want

$$\left(\sum_{i=1}^{n} r_{i}a_{i}, \sum_{j=1}^{n} s_{j}a_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} r_{i}s_{j}(a_{i}, a_{j}).$$

It is easy to see that that the form will be nondegenerate if and only if A is invertible, since $A\mathbf{y} = 0$ if and only (x, y) = 0 for every $y \in L$.

Now, since L is separable over K, we can write $L = K(\theta)$ for $\theta \in L$ and use $1, \theta, \ldots, \theta^{n-1}$ as a basis for L over K. Then we can write the matrix $A = [a_{ij}]$ with above with

$$a_{ij} = (\theta^{i-1}, \theta^{j-1}) = \mathcal{T}_{L/K}(\theta^{i+j-2}).$$

It isn't too hard to calculate these coefficients explicitly. In fact, if $\theta_1, \ldots, \theta_n$ are the roots of the minimal polynomial of θ , then

$$T_{L/K}(\theta) = \sum_{\ell=1}^{n} \theta_{\ell},$$

from what we proved earlier. Similarly, we have

$$a_{ij} = \mathcal{T}_{L/K}(\theta^{i+j-2}) = \sum_{\ell=1}^{n} \theta_{\ell}^{i+j-2}$$

There is a trick to finding the determinant of such a matrix. Recall the van der Monde matrix in $V := V(\theta_1, \ldots, \theta_n)$. It is the matrix

$$\left(\begin{array}{ccccc}
1 & \cdots & 1 \\
\theta_1 & \cdots & \theta_n \\
\cdots & \cdots & \cdots \\
\theta_1^n & \cdots & \theta_n^n \\
& & 1
\end{array}\right)$$

The determinant of this matrix is

$$\det(V) = \prod_{i < j} (\theta_i - \theta_j)$$

It is easy to check that $VV^T = A$ (a messy but easy calculation). Thus,

$$\det(A) = \det(V) \det(V^T) = \det(V)^2 = \left(\prod_{i < j} (\theta_i - \theta_j)\right)^2 \neq 0,$$

since $\theta_i \neq \theta_j$ for $i \neq j$ and we are done.

The following Corollary is now immediate.

Corollary 9.2. Let A be a Dedekind domain and let B be the integral closure of A in a finite separable extension of the field of fractions of A. Then B is a finitely generate A-module. In particular, B is Noetherian.

Proposition 9.3. Let A be a domain, $A \neq 0$, and let B be integral over A. Then for any prime \mathcal{P} of A, we have $B\mathcal{P} \neq 1$.

Proof. Suppose that $B\mathcal{P} = 1$. Then there are $x_1, \ldots, x_m \in A$ such that

$$b_1 x_1 + \dots + b_m x_m = 1.$$

Let $C = A[b_1, \ldots, b_m]$. Then C is finitely generated as an A-module and $\mathbb{P}C = 1$. Let $N = A_{\mathcal{P}}C$; then N is finitely generated and $A_{\mathcal{P}}\mathcal{P}N = N$. Since $A_{\mathcal{P}}$ is local, we must have N = 0 by Nakayama's lemma, which gives a contradiction, since $A \neq 0$.

Let's fix our notation for the rest of the day: A is Dedekind with field of fractions $K, L \supseteq K$ is a finite separable field extension of degree n, and B is the integral closure of A in L. Sometimes, we will impose additional restrictions on A.

Corollary 9.4. If A is a principal ideal domain and [L : K] = n for L a separable extension of K, the field of fractions of A, then the integral closure of A in L is isomorphic to A^n as an A-module.

Proof. If A is a principal ideal domain, then any finitely generated torsion-free A-module is a free module. In the proof of the theorem above, we saw that there is a free module of rank n, call it M such that $M \subset B \subset M^{\dagger}$. Since M^{\dagger} is also of rank n, we see that the rank of B must be n.

One more thing I wanted to mention about factorizations of ideals in Dedekind domains. If $I \subseteq \mathcal{P}$, then \mathcal{P} must appear in the factorization

of I. This follows from the fact that $R_{\mathcal{P}}I$ is positive power of $R_{\mathcal{P}}\mathcal{P}$, which would not happen if I didn't have \mathcal{P} in its factorization.

Let us continue with the set-up: A a Dedekind ring, K field of fractions of A, L a finite separable extension of K, and B the integral closure of A in L. We'll have n = [L : K]. Say we have a prime $\mathcal{P} \subset A$. What can we say about how $B\mathcal{P}$ factors?

Let's start with some basics. We write

$$B\mathcal{P}=\mathcal{Q}_1^{e_1}\cdots\mathcal{Q}_m^{e_m}.$$

The number e_i is called the **ramification degree** of \mathcal{Q}_i over \mathcal{P} . There's another number associated with \mathcal{Q}_i over \mathcal{P} as well. Recall that we have an injection of fields

$$A/\mathcal{P} \hookrightarrow B/\mathcal{Q}_i.$$

We call the index $[B/Q_i : A/P]$ the **relative degree** of Q_i over P. It isn't hard to see that f_i is finite and in fact $f_i \leq [L : K]$. We'll prove something more general along these lines in a bit. First, let's look at some examples...

Example 9.5. Let $A = \mathbb{Z}$ and $B = \mathbb{Z}[\sqrt{2}]$. Let's look at some factorizations of Bp into primes in p for various p.

- (1) $2B = (\sqrt{2})^2$.
- (2) 3B is a prime.
- (3) $7B = (\sqrt{2} 3)(\sqrt{2} + 3).$

Theorem 9.6. With the set-up above, for \mathcal{P} a maximal ideal of A we have

$$B\mathcal{P}=\mathcal{Q}_1^{e_1}\cdots\mathcal{Q}_m^{e_m}$$

and $f_i = [B/Q_i : A/P]$ with

$$\sum_{i=1}^{m} e_i f_i = n.$$

Proof. We know that

$$B/B\mathcal{P} \cong \sum_{i=1}^{m} B/\mathcal{Q}_i^{e_i}$$

by the Chinese remainder theorem. Now, let $S = A \setminus \mathcal{P}$. Then from above, $S^{-1}B$ is the integral closure of $A_{\mathcal{P}}$ in L. Hence, it is isomorphic to $A_{\mathcal{P}}^n$ as an $A_{\mathcal{P}}$ module. It follows that $S^{-1}B/S^{-1}B\mathcal{P}$ is a $A_{\mathcal{P}}/\mathcal{P}$ vector space of dimension n. Moreover, since $S \cap \mathcal{Q}_i$ is empty for each \mathcal{Q}_i , we see that $S^{-1}B\mathcal{Q}_i$ is a prime in $S^{-1}B$ and we have

$$S^{-1}B\mathcal{P} = S^{-1}B\mathcal{Q}_1^{e_1}\cdots\mathcal{Q}_m^{e_m}.$$

Combining this with homework results plus further localization, we obtain

$$S^{-1}B/S^{-1}B\mathcal{P} \cong \sum_{i=1}^{m} (S^{-1}B)/(S^{-1}B\mathcal{Q}_{i}^{e_{i}}) \cong \sum_{i=1}^{m} B_{\mathcal{Q}_{i}}/(B_{\mathcal{Q}_{i}}\mathcal{Q}_{i}^{e_{i}}).$$

Thus, we see that

$$\dim_{A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P}}\left(\sum_{i=1}^{m} B_{\mathcal{Q}_i}/(B_{\mathcal{Q}_i}\mathcal{Q}_i^{e_i})\right) = n$$

It will suffice to show, then, that

$$\dim_{(A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P})}(\sum_{i=1}^{m} B_{\mathcal{Q}_{i}}/(B_{\mathcal{Q}_{i}}\mathcal{Q}_{i}^{e_{i}})) = \sum_{i=1}^{m} e_{i}f_{i},$$

which would follow from

$$\dim_{(A_{\mathcal{P}}/A_{\mathcal{P}}\mathcal{P})}(B_{\mathcal{Q}_i}/(B_{\mathcal{Q}_i}\mathcal{Q}_i^{e_i})) = e_i f_i.$$

Since we can write

 $0 = B_{\mathcal{Q}_i} \mathcal{Q}_i^{e_i} / (B_{\mathcal{Q}_i} \mathcal{Q}_i^{e_i}) \subset (B_{\mathcal{Q}_i} \mathcal{Q}_i^{e_i}) / (B_{\mathcal{Q}_i}) \mathcal{Q}_i^{e_i-1} \subset \cdots \subset B_{\mathcal{Q}_i} / (B_{\mathcal{Q}_i} \mathcal{Q}_i^{e_i}),$ we need only show that

$$\dim_{A_{\mathcal{P}}/\mathcal{P}}((B_{\mathcal{Q}_i}\mathcal{Q}_i^j)/(B_{\mathcal{Q}_i}\mathcal{Q}_i^{j+1})) = f_i,$$

for any $j \geq 0$. Note that since B_{Q_i} is a DVR, its its maximal ideal is generated by a single element π . It follows that each power $B_{Q_i}Q_i^j$ is generated by π^j and that $(B_{Q_i}Q_i^j)/(B_{Q_i}Q_i^{j+1})$ is therefore a 1-dimensional $B_{Q_i}/B_{Q_i}Q_i$ vector space. Since B/Q_i is an f_i dimensional A/\mathcal{P} -vector space, it follows that $(B_{Q_i}Q_i^j)/(B_{Q_i}Q_i^{j+1})$ is an f_i -dimensional A/\mathcal{P} vector space and we are done. \Box