
Math 568
Notes from 10/6

Let’s also keep in mind that we can always put a polynomial in
upper-triangular or even Jordan canonical form when working with
the norm and the trace. Here are some basic properties of norm and
trace, most of which are elementary. Let’s remember as well that every
element x ∈ L will satisfy the characteristic polynomial of the matrix
rx (multiplication by x).

when L = K(x), we have

NL/K(x) = (−1)na0

and

TL/K(x) = −an−1

where

F (T ) = T n + an−1T
n−1 + · · ·+ a0

is a polynomial of minimal degree for x over K. This follows from the
Cayley-Hamilton theorem, which says that F (T ) must be the charac-
teristic polynomial for the matrix coming from the linear map

rx : a −→ xa

on L.

Proposition 8.1.

Let L be a finite dimensional extension of a field K and let x, y ∈ L
and a ∈ K. Then:

(1) TL/K(x+ y) = TL/K(x) + TL/K(y);
(2) TL/K(ax) = aTL/K(x);
(3) NL/K(xy) = NL/K(x) NL/K(y);

(4) NL/K(ax) = a[L:K] NL/K(x);
(5) TL/K(a) = [L : K]a;
(6) Let E be a subfield of L containing K, i.e. K ⊆ E ⊆ L. Then

TL/K(x) = TE/K

(
TL/E(x)

)
.

Proof. It is obvious that the trace is additive and we know from linear
algebra that the determinant is multiplicative. Moreover rxy = rxry

and rx + ry = rx+y. Properties 1-5 are obvious from this plus the
definition of the norm and trace (in the case of norm, remember we
can suppose we are in upper triangular form).

To prove property 6, let a1, . . . , am be a basis for E over K and let
b1, . . . , bn be a basis for L over E. Then the a`bk form a basis for L/K.
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We write

xbi =
n∑

j=1

βij(x)bj

where βij(x) ∈ E (we treat βij as a function in x). Similarly for any
y ∈ E, we write

yak =
m∑

`=1

αk`(y)a`.

Now, TL/E(x) =
n∑

i=1

βii(x) and TE/K(y) =
m∑

k=1

αkk(y). Thus,

TE/K(TL/K(x)) =
m∑

i=1

n∑
k=1

αkk(βii(x)).

On the other hand, writing

xakbi =
n∑

j=1

bjβij(x)ak =
n∑

j=1

m∑
`=1

αk`(βij(x))a`bj,

we see that

TL/K(x) =
n∑

i=1

m∑
k=1

αkk(βii(x)),

so we are done.
�

We’ll prove transitivity of the norm (the analogue of Property 6 for
norms) later with Galois theory. Trying to do the same argument for
the norm is more complicated. You have to choose a basis b1, . . . , bn
for L over E. Then we choose different bases

aik, k = 1, . . . ,m

for each K-subvector space biE of L so that βii(x) is upper-triangular
over biE. Then the argument goes through the same way.

Proposition 8.2. Let x ∈ L. Let F (T ) = T d + ad−1T
d−1 + · · ·+ a0 be

a polynomial of minimal degree for x over K.

TL/K = [L : K(x)](−ad−1).

Proof. Since TL/K(x)(x) = [L : K(x)]x and

TK(x)/K([L : K(x)]x) = [L : K(x)] TK(x)/K(x) = [L : K(x)](−ad−1),

this follows immediately from property 6 above. �

Proposition 8.3. If L is not separable over K, then TL/K is identically
0.
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Proof. This follows easily from the above. If α ∈ Lsep, we have [L :
K(α)] is divisible by the characteristic of K. If α ∈ L \ Lsep, then α
satisfies a polynomial of the form T pe − γ, which has next to last term
equal to 0, so TL/Lsep(α) = 0. �

Theorem 8.4. Let L ⊇ K be a finite extension of fields. Then the
bilinear form (x, y) = TL/K(xy) is nondegenerate ⇔ L is separable
over K.

Proof. (⇒) This direction follows immediately from the Proposition
above.

(⇐) Next time.
�

Before proving the other direction of the theorem above, we will use
it to show that the integral closure of a Dedekind domain in a finite
separble extension is a Dedekind domain.

Now, given a bilinear from (x, y) on a vector space W , we get a map
from ψ : W −→ W ∗, where W ∗ is the dual of W by sending x ∈ W
to the map f(y) = (x, y). When the form is nondegenerate this map is
injective. Thus, by dimension counting, when W is finite dimensional
and the form is nondegenerate, we get an isomorphism of vector spaces.
In particular, we can do the following. Let u1, . . . , un be a basis for W
over V . Then for each ui, there is a map fi ∈ W ∗ such that fi(uj) = δij
where δij is the Kronecker delta, which means that δij = 0 if i 6= j and
δij = 1 if i = j. Since fi(x) = (vj, x) for some vj ∈ W , we obtain a
dual basis v1, . . . , vn with the property that

(vi, uj) = δij.

Thus, we have the following.

Theorem 8.5. (Dual basis theorem) Let L ⊇ K be a finite, separable
extension of fields. Let u1, . . . , un be basis for L as a K-vector space.
Then there is a basis v1, . . . , vn for L as a K-vector space such that

TL/K(vi, uj) = δij.

Proof. Since (x, y) = TL/K(xy) is a nondegenerate bilinear form on L
(considered as a K-vector space), we may apply the discussion above.

�

Definition 8.6. Let L ⊇ K be a separable field extension. Let M be
a submodule of L. We define M † to be set

{x ∈ L | TL/K(xy) ∈ A for every y ∈M}
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Remark 8.7. It is clear that M ⊆ N ⇒ M † ⊇ N †, by definition of the
dual module.

As usual, A is a Dedekind domain with field of fractions K and B is
the integral closure of A in a finite separable extension L of K.

Lemma 8.8. Let M be an A-submodule of L for which

M = Bu1 + · · ·+Bun

for u1, . . . , un a basis for L over K. Then M † is equal to Bv1+· · ·+Bvn

for v1, . . . , vn a dual basis for u1, . . . , un with respect to the bilinear form
induced by the trace.

Proof. Let x ∈ L. Then x ∈ M † if and only if TL/K(xui) ∈ A for each

ui. Writing x as
n∑

i=1

αivi with αi ∈ K, we see that TL/K(xui) = αi, so

TL/K(xui) ∈ R if and only if αi ∈ R. This completes our proof. �

Theorem 8.9. Let A be a Dedekind domain with field of fractions K
and let L ⊇ K be a finite, separable extension of fields. Let B be the
integral closure of A in L. Then B a finitely generated A-module. In
particular B is Noetherian as a ring and is therefore Dedekind.

Proof. We already know that B is 1-dimensional, integrally closed, and
an integral domain. We need only show that it is Noetherian.

Then B ⊂ B† since B is integral over A (recall B integral over A
means that the coefficients of the minimal polynomial for B over A are
all in A). Now, we choose a basis u1, . . . , un for L over K. I claim that
we can choose the ui to be in B. This is because for any u ∈ L we have

um +
xm−1

ym−1

um−1 + · · ·+ x0

y0

= 0

with xi and yi in A. Replacing u with u′ =
m∏

i=1

yi and multiplying

through by (
m∏

i=1

yi)
m converts this into an integral monic equation in u′

as we’ve seen before. Thus, we can take our basis ui, replace each ui

with a multiple of ui and still have a basis. Let v1, . . . , vn be a dual
basis for u1, . . . , un with respect to the trace form. Then the A-module
generated by the vi contains B†. So we have

B ⊆ B† ⊇ Av1 + · · ·+ Avn

which implies that B is contained in a finitely generated A-module,
which in turn implies that B is Noetherian as an A-module. Hence, B
is Noetherian as a B-module and is a Noetherian ring. �


