Math 568 Problem Set \#1 Due 9/15/14

1. For an element $u+v i$ of $\mathbb{Z}[i]$, define $N(u+v i):=u^{2}+v^{2}$.
(a) Show that for any $c, d \in \mathbb{Z}[i]$, we have $N(c) N(d)=N(c d)$.
(b) Show that for any elements $a, b \in \mathbb{Z}[i]$, it is possible to write

$$
a=q b+r,
$$

where $q, r \in \mathbb{Z}[i]$ and $N(r)<N(b)$.
(c) Conclude that $\mathbb{Z}[i]$ is a principal ideal domain.
2. Use the Euclidean algorithm to show that $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ is a principal ideal domain.
3. Answer each of the following yes or no and explain your answer.
(a) Is $11 \sqrt{7}$ integral over \mathbb{Z} ?
(b) Is $\frac{1+\sqrt{3}}{2}$ integral over \mathbb{Z} ?
(c) Is $\frac{1+\sqrt{5}}{2}$ integral over \mathbb{Z} ?
(d) Is $\mathbb{Z}[\sqrt{-19}]$ integrally closed in $\mathbb{Q}[\sqrt{-19}]$?
4. Show that ± 1 are the only units in the ring $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$.
5. It turns out that $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ is a unique factorization domain (we will prove this later). Given this fact, find all integer pairs (x, y) such that $x^{2}+19=y^{3}$ and justify your answers with a proof.
6. (a) Suppose that α is integral of degree 2 over \mathbb{Z} and that there is a basis m_{1}, m_{2} for $\mathbb{Z}[\alpha]$ over \mathbb{Z} such that

$$
\begin{aligned}
& \alpha m_{1}=m_{2} \\
& \alpha m_{2}=-m_{1}+m_{2} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by α.
(b) Suppose that β is integral of degree 2 over \mathbb{Z} and that there is a basis m_{1}, m_{2} for $\mathbb{Z}[\beta]$ over \mathbb{Z} such that

$$
\begin{aligned}
& \beta m_{1}=m_{2} \\
& \beta m_{2}=5 m_{1} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by β.
7. Let T be an $n \times n$ matrix with coefficients in a ring A. Show that there is a matrix U for which $U T=(\operatorname{det} T) I$.
8. Let A, B, and C be rings with $A \subset B \subset C$. Show that if B is integral over A and C is integral over B, then C is integral over A.
9. (Ex. 4, p. 7) Let d be a squarefree integer. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{d}]$ is

$$
\mathbb{Z}[\sqrt{d}] \quad \text { if } \quad d \equiv 2,3 \quad(\bmod 4)
$$

and

$$
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \quad \text { if } \quad d \equiv 1 \quad(\bmod 4) .
$$

