1.

(a) Let A and B be integral domains where $A \subseteq B$ and B is integral over A. Show that if \mathfrak{m} is a maximal ideal in B, then $\mathfrak{m} \cap A$ is a maximal ideal in A.
(b) Give an example of integral domains $A \subseteq B$ and a maximal ideal \mathfrak{m} in B such that $\mathfrak{m} \cap A$ is not a maximal ideal in A.
(c) Let A and B be integral domains where $A \subseteq B$ and B is integral over A. Show that if \mathfrak{b} is a nonzero ideal of B, then $\mathfrak{b} \cap A$ is a nonzero ideal of A.
(d) Give an example of integral domains $A \subseteq B$ and a nonzero ideal \mathfrak{b} in B such that $\mathfrak{b} \cap A=0$.
2. Let K be a field and let v be a discrete valuation on K. Let

$$
R_{v}=\{x \in K \mid v(x) \geq 0\} \cup\{0\}
$$

and let

$$
\mathfrak{m}_{v}=\{x \in K \mid v(x)>0\} \cup\{0\} .
$$

Show that if B is local ring with maximal ideal \mathfrak{m}_{B} such that $R_{v} \subseteq B$ and $\mathfrak{m}_{B} \cap R_{v}=\mathfrak{m}_{v}$, then $B=R_{v}$.

From the book: Section 1.6: Problems 2, 4, 6, 7
(Do four problems total)

