A commutative algebra problem.

1. Let A be any integral domain and let f be a nonzero element of A. We define A_{f} to be the set of all elements of the form a / f^{n} where $a \in A$ and f is a positive integer modulo the equivalence relation $a / f^{n} \sim b / f^{m}$ if $f^{m} a=f^{n} b$.
(a) Show that there is a bijection between prime ideals in A_{f} and prime ideals in A that do not contain f.
(b) Now suppose that A is equal to $A(Y)$ for Y an affine variety. Show that there is a bijection between points P in Y such that $f(P) \neq 0$ and maximal ideals in A_{f}.

Also, from Hartshorne
1.2:\#2, \#9, \#13, \#15
1.3: \#1.

