Problem Set #13 for May 3, 2006

1. Prove that if D is an effective divisor (i.e., $D \ge 0$), on a curve C, then dim $D = \deg D + 1$ if and only if D = 0 or the genus of C is zero.

2. The purpose of this exercise is to show that for any curve nonsingular projective C, there is a map from $\varphi: C \longrightarrow \mathbb{P}^2$ that is a birational isomorphism.

(a) Let p be the characteristic of the base field k. Prove that there is a map $f: C \longrightarrow \mathbb{P}^1$ such that the degree of f is prime to p.

(b) Let f be your map from (a). Show that there is an element u of K(C) such that K(C) = k(f, u). [Hint: use the primitive element theorem for finite, separable extensions.]

(c) Show that the map from \overline{C} to \mathbb{P}^2 induced by [f:u:1] is birational. [Hint: it suffices to show that for some affine subset \mathcal{U} of C the map to \mathbb{A}^2 given by (f, u) is birational. Choose an affine subset on which f and u are regular.]

3. Let C be the nonsingular projective model for the affine curve $y^2 = f(x)$ where f is a polynomial of degree greater than two without repeated roots. Assume that the base field has characteristic not equal to 2. Calculate the genus of C using the Riemann-Hurwitz formula.

4. Let C be the projective nonsingular model for the affine curve given by $y^3 = x^3 - x$. Assume the characteristic of the base field isn't equal to 2 or 3.

(a) Show that the rational map given by projection onto the x-axis ramifies only at (0,0), (0,1), and (0,-1). Denote these points as P_1 , P_2 , and P_3 ; for each *i*, let Q_i denote the image of P_i in \mathbb{P}^1 .

(b) For z in K(C), let Tr(z) denote the trace of the map induced by multiplication by z. Show that for any element of the $z = f(x) + g(x)y + h(x)y^2$, we have Tr(z) = 3f(x).

(c) Show that for each *i*, we have $v_{Q_i}(\operatorname{Tr}(z)) \ge 0$ whenever $v_{P_i}(z) \ge -2$.

(d) Show that for any point P' that is not one of the P_i , there is an element z such that $v_{P'}(z) = -1$ and $v_{Q'}(\text{Tr}(z)) = -1$, where Q' is the image of P'.

(e) Let ω be the Weil differential on $\mathcal{A}_{k(x)}$ that vanishes at $\mathcal{A}_{k(x)}(-2\infty)$ (i.e. the differential coming from the residue map for dx). Show that the differential $\omega \circ \text{Tr}$ (which sends $\mathcal{A}_{K(C)}$ to the base field k) vanishes on $\mathcal{A}_{K(C)}(D)$, where D is the divisor

$$D = 2(P_1 + P_2 + P_3) - 2(R_1 + R_2 + R_3)$$

and R_1 , R_2 , and R_3 are the points on C that have ∞ as their image when we project onto the x-axis.