Problem Set \#13 for May 3, 2006

1. Prove that if D is an effective divisor (i.e., $D \geq 0$), on a curve C, then $\operatorname{dim} D=$ $\operatorname{deg} D+1$ if and only if $D=0$ or the genus of C is zero.
2. The purpose of this exercise is to show that for any curve nonsingular projective C, there is a map from $\varphi: C \longrightarrow \mathbb{P}^{2}$ that is a birational isomorphism.
(a) Let p be the characteristic of the base field k. Prove that there is a map $f: C \longrightarrow \mathbb{P}^{1}$ such that the degree of f is prime to p.
(b) Let f be your map from (a). Show that there is an element u of $K(C)$ such that $K(C)=k(f, u)$. [Hint: use the primitive element theorem for finite, separable extensions.]
(c) Show that the map from C to \mathbb{P}^{2} induced by $[f: u: 1]$ is birational. [Hint: it suffices to show that for some affine subset \mathcal{U} of C the map to \mathbb{A}^{2} given by (f, u) is birational. Choose an affine subset on which f and u are regular.]
3. Let C be the nonsingular projective model for the affine curve $y^{2}=f(x)$ where f is a polynomial of degree greater than two without repeated roots. Assume that the base field has characteristic not equal to 2. Calculate the genus of C using the Riemann-Hurwitz formula.
4. Let C be the projective nonsingular model for the affine curve given by $y^{3}=x^{3}-x$. Assume the characteristic of the base field isn't equal to 2 or 3 .
(a) Show that the rational map given by projection onto the x-axis ramifies only at $(0,0),(0,1)$, and $(0,-1)$. Denote these points as P_{1}, P_{2}, and P_{3}; for each i, let Q_{i} denote the image of P_{i} in \mathbb{P}^{1}.
(b) For z in $K(C)$, let $\operatorname{Tr}(z)$ denote the trace of the map induced by multiplication by z. Show that for any element of the $z=f(x)+g(x) y+h(x) y^{2}$, we have $\operatorname{Tr}(z)=3 f(x)$.
(c) Show that for each i, we have $v_{Q_{i}}(\operatorname{Tr}(z)) \geq 0$ whenever $v_{P_{i}}(z) \geq-2$.
(d) Show that for any point P^{\prime} that is not one of the P_{i}, there is an element z such that $v_{P^{\prime}}(z)=-1$ and $v_{Q^{\prime}}(\operatorname{Tr}(z))=-1$, where Q^{\prime} is the image of P^{\prime}.
(e) Let ω be the Weil differential on $\mathcal{A}_{k(x)}$ that vanishes at $\mathcal{A}_{k(x)}(-2 \infty)$ (i.e. the differential coming from the residue map for $d x$). Show that the differential $\omega \circ \operatorname{Tr}$ (which sends $\mathcal{A}_{K(C)}$ to the base field k) vanishes on $\mathcal{A}_{K(C)}(D)$, where D is the divisor

$$
D=2\left(P_{1}+P_{2}+P_{3}\right)-2\left(R_{1}+R_{2}+R_{3}\right)
$$

and R_{1}, R_{2}, and R_{3} are the points on C that have ∞ as their image when we project onto the x-axis.

