Problem Set \#12 for April 26, 2006

We will adopt the following notation: for a divisor $D=\sum_{P \in C} n_{P} P$, we let $v_{P}(D)$ denote the integer n_{P}. We let $\operatorname{Supp} D$ denote the set of all P for which $v_{P}(D) \neq 0$.

1. A linear system $\mathcal{L}(D)$ on a curve C is said to be basepoint-free if for any $P \in C$ there is a rational function $f \in \mathcal{L}(D)$ such that $v_{P}(f)=-v_{P}(D)$.
(a) Give an example of a linear system that is not basepoint-free.
(b) Show that $\mathcal{L}(D)$ is basepoint-free if and only if for any $P \in C$, we have

$$
\operatorname{dim}(D-P)=(\operatorname{dim} D)-1
$$

(c) Use (b) to deduce that for any curve C there is a constant M such that for all D with $\operatorname{deg} D>M$, the linear system $\mathcal{L}(D)$ is basepoint-free.
2. Let P and Q be distinct points in C. We say that a linear system $\mathcal{L}(D)$ separates P and Q if there is a rational function $f \in \mathcal{L}(D)$ such that $f(P) \neq f(Q)$.
(a) Take two distinct points P and Q, neither of which is in Supp D. Show that $\mathcal{L}(D)$ separates P and Q whenever

$$
\operatorname{dim}(D-P-Q)=\operatorname{dim} D-2
$$

(b) Use (a) to deduce that for any curve C there is a constant M such that for all D with $\operatorname{deg} D>M$ and any two points P and Q outside of $\operatorname{Supp} D$, the system $\mathcal{L}(D)$ separates P and Q.
3. Let P be any point on a curve C. Show that for some n there is an injective map $\varphi: C \longrightarrow \mathbb{P}^{n}$ such that P is the only point in C whose image is in the hyperplane $x_{n}=0$. [Hint: Take a large multiple $m P$ of P and consider the linear system $\mathcal{L}(m P)$. A basis $f_{0}, \ldots, f_{n-1}, 1$ for rational functions in $\mathcal{L}(m P)$ give a map from C to \mathbb{P}^{n} for some $n-$ think of it as $\left[f_{0}(P): \cdots: f_{n-1}(P): 1\right]$. Show that if m is large enough, then P is the only point that is sent into the hyperplane $x_{n}=0$, using exercise 1 . Then use exercise 2 to show that if m is large enough, then φ must be injective. On next week's HW, we'll show that φ is actually an isomorphism onto its image, which will prove that $C \backslash\{P\}$ is actually affine.]
4. We will say that a point P on C is a ramification point of the nonconstant rational function $f \in K(C)$ when one of the following conditions holds
(a) $v_{P}(f) \leq-2$;
(b) $v_{P}(f-f(P)) \geq 2$.

Note that the first condition simply means that f has a pole or order greater than 1 at P and that in the second $f(P)$ is simply an element of k so $f-f(P)$ is an element of the function field of C. The quantity e_{P}, which is defined to be $v_{P}(f)$ when P has a pole at P and $v_{p}(f-f(P))$ when f doesn't have a pole at P , is called the ramification index of f at P.
(a) Show that for any $\beta \in k$, we have

$$
\#\{P \in C \mid f(P)=\alpha\}=[K(C): k(f)]
$$

unless one of the P such that $f(P)=\alpha$ is a ramification point for f.
(b) Show that if $C=\mathbb{P}^{1}$ and the rational function f is simply a polynomial in $k[x]$, then for any $\alpha \in k$, the corresponding point P is a ramification point for f if and only if $f^{\prime}(\alpha)=0$.
(c) With the same conditions as (b), suppose additionally that the characteristic of k is 0 . Show that

$$
\sum_{P \in \mathbb{P}^{1}}\left(e_{P}-1\right)=2 \operatorname{deg} f-2 .
$$

(d) Give an example of a rational function f on a curve C such that every point on C is a ramification point of f. [This only works in characteristic $p>0$]
[Note: this definition of ramification point is not standard. You may see it defined differently elsewhere]
5. The purpose of this exercise is to use basic facts about linear systems to give an upper bound on the genus of curves of a particular form. Let C be the projective curve defined by

$$
z y^{m}-f(x, z)=0
$$

where $f(x, z)$ has degree $m+1$ and factors into distinct linear factors and z does not divide $f(x, z)$.
(a) Show that C is nonsingular.
(b) Show that x / z has a pole of order m at $[0: 1: 0]$ and that y / z has a pole of order $m+1$ at $[0: 1: 0]$.
(c) Let P denote the point $[0: 1: 0]$. Show that for any $N \geq m(m-1)$, we have $\operatorname{dim} N P=\operatorname{dim}((N-1) P)+1$. [Hint: it suffices to show you can write $N=s m+t(m+1)$ for positive integers s and t.]
(d) Use c to conclude that the genus of C is less than or equal to $\frac{m(m-1)}{2}$. [Just do a simple count here]

