Problem Set \#11 for April 19, 2006

Exercise 4 from Chapter I, Section 5 of Hartshorne. Plus

1. Let C be a nonsingular projective curve in \mathbb{P}^{n} and let

$$
f\left(X_{0}, \ldots, x_{n}\right)=\frac{g\left(X_{0}, \ldots, X_{n}\right)}{h\left(X_{0}, \ldots, X_{n}\right)}
$$

be a rational function on C (here g and h have the same degree).
(a) Suppose that g is irreducible. Show that for any point P on C where $h(P) \neq 0$, we have

$$
v_{P}(f)=i(C, Z(g) ; P),
$$

where $i(C, Z ; P)$ is the usual intersection multiplicity from Secion 7 of Hartshorne.
(b) Now, let C be a nonsingular projective curve in \mathbb{P}^{2}. Suppose that C doesn't contain the point $[0: 0: 1]$. Let $\pi: \mathbb{P}^{2}\{0\} \longrightarrow H$ be the usual projection map from \mathbb{P}^{2} onto the hyperplane consistinig of all points of the form $[x: y: 0]$ and let $f: C \longrightarrow \mathbb{P}^{1}$ be the map this induces on C, thought of as a rational function where that vanishes when $x=0$ and has poles when $y=0$. Use Bézout's theorem to prove that $\sum_{v_{P}(f) \geq 0} v_{P}(f)=\operatorname{deg} C$.
(c) What happens when C contains $[0: 0: 1]$? Note that π still gives rise to a map on C in this case.
2. Let C be the nonsingular projective curve defined by $z y^{2}=x^{3}-z^{2} x$ in \mathbb{P}^{2} (this is a projective curve that is birational to the curve defined by $y^{2}=x^{3}-x$, which we showed is not rational a few weeks ago). Let $P_{1}=[0: 1: 0]$, let $P_{2}=[2: \sqrt{6}: 1]$, and let $P_{3}=[2:-\sqrt{6}: 1]$, all considered as points in \mathbb{P}^{2}. Find bases for the following linear systems on C.
(a) $\mathcal{L}\left(P_{2}\right)$.
(b) $\mathcal{L}\left(P_{2}+P_{3}\right)$.
(c) $\mathcal{L}\left(P_{1}\right)$.
(d) $\mathcal{L}\left(2 P_{1}\right)$.
(e) $\mathcal{L}\left(3 P_{1}\right)$.
3. Let C be a projective curve and let P_{1}, \ldots, P_{n} be any set of points in C. Show that there is an affine subset \mathcal{U} of C that contains all of the P_{i}. [Try finding a hyperplane that doesn't contain any of the P_{i}.]
4.
(a) Let A be a Dedekind domain and let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}$ be a set of maximal ideals. Let $B=\bigcap_{i=1}^{n} A_{\mathfrak{m}_{i}}$. Show that B has finitely many maximal ideals.
(b) Show that a Dedekind domain with finitely many maximal ideals must be a PID. [You may use the fact that any ideal in a Dedekind domain factors into a product of prime ideals]
(c) Use 3. along with (a) and (b) to show that given any distinct points P_{1}, \ldots, P_{n} on a nonsingular projective curve C and any set of integers e_{1}, \ldots, e_{n}, there is an element t in the function field $K(C)$ such that $v_{P_{i}}(t)=e_{i}$ for $i=1, \ldots, n$.
(Do four of the five)

