Math 531 Tom Tucker

Let's finish off the Proposition from last time.

Proposition 7.1. Let R be a Noetherian local domain of dimension 1 with maximal ideal \mathcal{M} and with $R/\mathcal{M} = k$ its residue field. Then the following are equivalent

- (1) R is a DVR;
- (2) R is integrally closed;
- (3) \mathcal{M} is principal;
- (4) there is some $\pi \in R$ such that every element $a \in R$ can be written uniquely as $u\pi^n$ for some unit u and some integer $n \geq 0$.
- (5) every nonzero ideal is a power of \mathcal{M} ;

Proof. $(2 \Rightarrow 3)$ Let $a \in \mathcal{M}$. There is some n for which $\mathcal{M}^n \subset (a)$ (since $\bigcap_{n=1}^{\infty} \mathcal{M}^n = 0$) but \mathcal{M}^{n-1} is not contained in (a) (note n-1 could be zero). Let $b \in \mathcal{M}^{n-1} \setminus (a)$ and let x = a/b. We can show that $\mathcal{M} = Rx$. This is equivalent to showing that $x^{-1}\mathcal{M} = R$. Note that since (b) is not in (a), $b/a = x^{-1}$ cannot be in R. Hence, it cannot be integral over R. By Cayley-Hamilton, $x^{-1}\mathcal{M} \neq \mathcal{M}$ since \mathcal{M} is finitely generated as an R-module and $x^{-1} \notin R$ and R is integrally closed. Since $x^{-1}\mathcal{M}$ is an R-module and $x^{-1}\mathcal{M} \subset A$ (this follows from the fact that $b\mathcal{M} \subset \mathcal{M}^n \subset (a)$), this means that $x^{-1}\mathcal{M}$ is an ideal of R not contained in \mathcal{M} . So $x^{-1}\mathcal{M} = R$, as desired.

One more criterion related to being a DVR.

Proposition 7.2. Let A be a Noetherian local ring with maximal ideal \mathcal{M} . Suppose that

$$Rx_1 + \dots + Rx_n + \mathcal{M}^2 = \mathcal{M}$$

for $x_i \in R$. Then $Rx_1 + \cdots + Rx_n = \mathcal{M}$.

Proof. Let $N = \mathcal{M}/(Rx_1 + \dots Rx_n)$. Then $\mathcal{M}N = N$, so N = 0 by Nakayama's lemma, since N is finitely generated.

Corollary 7.3. Let A be a Noetherian local ring. Let \mathcal{M} be its maximal ideal and let k be the residue field A/\mathcal{M} . Then

$$\dim_k \mathcal{M}/\mathcal{M}^2 = 1$$

if and only if \mathcal{M} is principal

Proof. One direction is easy: If \mathcal{M} is generated by π , then $\mathcal{M}/\mathcal{M}^2$ is generated by the image of π modulo \mathcal{M}^2 . To prove the other direction, suppose that $\mathcal{M}/\mathcal{M}^2$ has dimension 1. Then we can write $\mathcal{M} = Ra + \mathcal{M}^2$ for some $a \in \mathcal{M}$. Then the module $M = \mathcal{M}/a$ has the property that $\mathcal{M}M = M$, since any element in M can be written as ca + d for

1

 $c \in R$ and $d \in \mathcal{M}^2$. By Nakayama's lemma, we thus have M = 0, so $\mathcal{M} = Ra$.

Proposition 7.4. Let R be a domain and let $S \subset R$ be a multiplicative subset not containing 0. Let $b \in K$, where K is the field of fractions of R. Then b is integral over $S^{-1}R \Leftrightarrow sb$ is integral over R for some $s \in S$.

Proof. If b is integral over $S^{-1}R$, then we can write

$$b^{n} + \frac{a_{n-1}}{s_{n-1}}b^{n-1} + \dots + \frac{b_0}{s_0} = 0.$$

Letting $s = \prod_{i=0}^{n-1} s_i$ and multiplying through by s^n we obtain

$$(sb)^n + a'_{n-1}(sb)^{n-1} + \dots + a'_0 = 0$$

where

$$a_i' = s^{n-i-1} \prod_{\substack{j=1\\j\neq i}}^n s_i a_i$$

which is clearly in R. Hence sb is integral over R. Similarly, if an element sb with $b \in S^{-1}R$ and $s \in S$ satisfies an equation

$$(sb)^n + a_{n-1}(sb)^{n-1} + \dots + a_0 = 0,$$

with $a_i \in R$, then dividing through by s^n gives an equation

$$b^{n} + \frac{a_{n-1}}{s}b^{n-1} + \cdots + \frac{a_{0}}{s^{n}}$$

with coefficients in $S^{-1}R$.

Corollary 7.5. If R is integrally closed, then $S^{-1}R$ is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R. Since any element $c \in K$ that is integral over $S^{-1}R$ has the property that sc is integral over R for some $s \in S$, this means that $sc \in R$ for some $s \in S$ and hence that $c \in S^{-1}R$.

Lemma 7.6. Let $A \subseteq B$ be domains and suppose that every element of B is algebraic over A. Then for every ideal nonzero I of B, we have $I \cap A \neq 0$.

Proof. Let $b \in A$ be nonzero. Since b is algebraic over A and $b \neq 0$, we can write

$$a_n b^n + \dots + a_0 = 0,$$

for $a_i \in A$ and $a_0 \neq 0$. Then $a_0 \in I \cap \mathbb{Z}$.

Theorem 7.7. Let α be an algebraic number that is integral over \mathbb{Z} . Suppose that $\mathbb{Z}[\alpha]$ is integrally closed. Then $\mathbb{Z}[\alpha]$ is a Dedekind domain.

Proof. Since $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module, any ideal of $\mathbb{Z}[\alpha]$ is also a finitely generated \mathbb{Z} -module. Hence, any ideal of $\mathbb{Z}[\alpha]$ is finitely generated over $\mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is Noetherian. Let \mathcal{Q} be a prime in $\mathbb{Z}[\alpha]$. Then, $\mathcal{Q} \cap \mathbb{Z}$ is a prime ideal (p) in \mathbb{Z} . Hence, $\mathbb{Z}[\alpha]/\mathcal{Q}$ is a quotient of $\mathbf{F}_p[X]/f(X)$ where f(X) is the minimal monic satisfied by α . Since $\mathbf{F}_p[X]/f(X)$ has dimension 0 (Exercise 7 on the homework), this implies that $\mathbb{Z}[\alpha]/\mathcal{Q}$ is a field so \mathcal{Q} must be maximal. \square

Remark 7.8. The rings we deal with will not in general have this form.