Math 531 Tom Tucker
Let’s finish off the Proposition from last time.

Proposition 7.1. Let R be a Noetherian local domain of dimension 1
with mazimal ideal M and with R/ M = k its residue field. Then the
following are equivalent

(1) Ris a DVR;

(2) R is integrally closed;

(3) M is principal;

(4) there is some € R such that every elementa € R can be written

uniquely as un™ for some unit u and some integer n > 0.
(5) every nonzero ideal is a power of M;

Proof. (2 = 3) Let a € M. There is some n for which M" C (a)
(since ()72, M"™ = 0) but M"! is not contained in (a) (note n — 1
could be zero). Let b € M™ !\ (a) and let z = a/b. We can show that
M = Rz. This is equivalent to showing that 7'M = R. Note that
since (b) is not in (a), b/a = z~! cannot be in R. Hence, it cannot be
integral over R. By Cayley-Hamilton, 7'M # M since M is finitely
generated as an R-module and 7! ¢ R and R is integrally closed.
Since z7' M is an R-module and 27 M C A (this follows from the fact
that bM C M™ C (a)), this means that 7'M is an ideal of R not
contained in M. So 27!M = R, as desired. O

One more criterion related to being a DVR.

Proposition 7.2. Let A be a Noetherian local ring with mazimal ideal
M. Supppose that

Rxi+ -+ Ry, + M? = M,
for xz; € R. Then Rxy + ---+ Rx,, = M.

Proof. Let N = M/(Rxy + ... Rxz,,. Then MN = N, so N = 0 by
Nakayama’s lemma, since N is finitely generated. U

Corollary 7.3. Let A be a Noetherian local ring. Let M be its mazimal
ideal and let k be the residue field A/ M. Then

dim, M/ M? =1
if and only if M is principal
Proof. One direction is easy: If M is generated by m, then M/ M? is
generated by the image of 7 modulo M?2. To prove the other direction,

suppose that M /M? has dimension 1. Then we can write M = Ra +

M? for some a € M. Then the module M = M /a has the property

that MM = M, since any element in M can be written as ca + d for
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¢ € R and d € M?. By Nakayama’s lemma, we thus have M = 0, so
M = Ra. O

Proposition 7.4. Let R be a domain and let S C R be a multiplicative
subset not containing 0. Let b € K, where K 1is the field of fractions
of R. Then b is integral over ST'R < sb is integral over R for some
sef.

Proof. If b is integral over S™!R, then we can write
oy el 2,
Sn—1 S0
Letting s = H;:Ol s; and multiplying through by s we obtain
(sD)" + ap_y(sD)" ™ 4 +apg =0

n
a, ="t H 5;0;
j=1
J#i
which is clearly in R. Hence sb is integral over R. Similarly, if an
element sb with b € S™'R and s € S satisfies an equation

(5D)" + an_1(sb)" ' + - +ag =0,
with a; € R, then dividing through by s™ gives an equation

where

An1,,_ a
pr o Ty 1+_...+._%’

s s
with coefficients in S~!R.

O
Corollary 7.5. If R is integrally closed, then S™'R is integrally closed.

Proof. When R is integrally closed, any b that is integral over R is in R.
Since any element ¢ € K that is integral over S™!R has the property
that sc is integral over R for some s € S, this means that sc € R for
some s € S and hence that ¢ € S7!R.

O

Lemma 7.6. Let A C B be domains and suppose that every element
of B is algebraic over A. Then for every ideal nonzero I of B, we have

INA#0.

Proof. Let b € A be nonzero. Since b is algebraic over A and b # 0, we
can write

ab" + -+ a9 =0,
for a; € A and ag # 0. Then ag € I NZ. O
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Theorem 7.7. Let a be an algebraic number that is integral over 7.
Suppose that Z[a| is integrally closed. Then Z|a] is a Dedekind domain.

Proof. Since Z|a] is a finitely generated Z-module, any ideal of Z[«] is
also a finitely generated Z-module. Hence, any ideal of Z[o/] is finitely
generated over Z|a], so Z[a] is Noetherian. Let Q be a prime in Z[a].
Then, Q NZ is a prime ideal (p) in Z. Hence, Z[a]/Q is a quotient
of F,[X]/f(X) where f(X) is the minimal monic satisfied by «. Since
F,[X]/f(X) has dimension 0 (Exercise 7 on the homework), this im-
plies that Z[«a]/Q is a field so Q@ must be maximal. O

Remark 7.8. The rings we deal with will not in general have this form.



