1. Let F be a monic polynomial over an integral domain A. Recall the definition of the resultant from Problem Set # 5. Show that

$$\Delta(F)A = \operatorname{Res}(F, F')A.$$

2. p.42, Ex. 4.

3. p. 51, Ex.2.

4. Let A be a Dedekind domain with field of fractions K. Let L and L' be finite separable extensions of K and suppose that there exist $\alpha \in L$ and $\alpha' \in L'$ such that the integral closure of A in L is $A[\alpha]$ and the integral closure of A in L' is $A[\alpha']$. Suppose furthermore that $\Delta(A[\alpha]/A) + \Delta(A[\alpha']/A) = A$. Let M be the compositum LL' over K. Is the integral closure of A in M necessarily equal to $A[\alpha, \alpha']$? Give a proof or a counterexample.

5. Let p and q be primes in \mathbb{Z} with $p \neq q$. Find the integral closure of \mathbb{Z} in $\mathbb{Q}(\xi_{pq})$ where ξ_{pq} a primitive pq-th root of unity. Justify your answer.

6. Let ξ_{p^2} be a p^2 -th root of unity. Calculate $N_{\mathbb{Q}(\xi_{n^2})/\mathbb{Q}}(1-\xi_{p^2})$.