Math 531 Problem Set #7 Due 10/20/04

- 1. Let M be an $n \times n$ matrix over a field K. Suppose that $M^n = 0$ for some positive integer n. Show that the trace of M must be 0.
- 2. Let K be a field and let $B \supseteq K$ be an integral ring extension of K that is finitely generated as a K-module (B is not necessarily an integral domain). Then every element $x \in B$ gives rise to a multiplication map $r_x : b \mapsto xb$ from B to B. The map r_x is clearly a K-linear map and we can define its trace $T_{B/K}(x)$ in the usual way. Show that the bilinear form $(x,y) = T_{B/K}(xy)$ is degenerate whenever there exists an $x \in B$ such that $x \neq 0$ and for which $x^n = 0$ for some positive integer n.
- 3. Let A be a Dedekind domain with field of fractions K. Let L and L' be finite separable extensions of K and suppose that there exist $\alpha \in L$ and $\alpha' \in L'$ such that the integral closure of A in L is $A[\alpha]$ and the integral closure of A in L' is $A[\alpha']$. Let M be the compositum LL' over K. Is the integral closure of A in M necessarily equal to $A[\alpha, \alpha']$? Give a proof or a counterexample.
- 4. Let $F(x) = x^n a$. Find a formula for $\Delta(F)$ in terms of a and n.
- 5. (Hard) Find the integral closure of \mathbb{Z} in $\mathbb{Q}(\sqrt[3]{19})$.
- 6. Let ξ_p be a p-th primitive root of unity. Show that $\mathbb{Z}[\xi_p]$ is integrally closed.
- 7. Let $B = \mathbb{Z}[\xi_3]$. Factor pB for p equal to each of the following: 2, 3, 5, 7, 11, 13.
- 8. Let α satisfy $\alpha^3 \alpha^2 + 5$ and let $B = \mathbb{Z}[\alpha]$. Find all the primes $Q \subset B$ lying above the following primes in \mathbb{Z} : 2, 3, 5, 7, 11.
- 9. Let a be a square-free positive integer. Let p be a prime number. Show that $\mathbb{Z}[\sqrt[p]{a}]$ is integrally closed if and only if $a^p a \not\equiv 0 \pmod{p^2}$.

1