Math 531 Problem Set \#5 Due 10/6/00

1. Let R be an integral domain, let \mathcal{M} be a maximal ideal of R, and let S be a multiplicative subset of R contained in $R \backslash \mathcal{M}$. Show that

$$
R / \mathcal{M}^{n} \cong S^{-1} R /\left(S^{-1} R \mathcal{M}^{n}\right)
$$

2. Let $\theta=\sqrt{3}$ and let $R=\mathbb{Z}[\theta]$.
(a) Write down a dual basis for the basis $1, \theta$ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y)=\mathrm{T}_{\mathbb{Q}(\theta) / \mathbb{Q}}(x y)$.
(b) Letting R^{\dagger} denote the \mathbb{Z}-module generated by the dual basis above, find the order of the abelian group R^{\dagger} / R.
3. Let $\theta=\frac{1+\sqrt{5}}{2}$ and let $R=\mathbb{Z}[\theta]$.
(a) Write down a dual basis for the basis $1, \theta$ for $\mathbb{Q}(\theta)$ over \mathbb{Q} with respect to the bilinear form $(x, y)=\mathrm{T}_{\mathbb{Q}(\theta) / \mathbb{Q}}(x y)$.
(b) Letting R^{\dagger} denote the \mathbb{Z}-module generated by the dual basis above, find the order of the abelian group R^{\dagger} / R.
4. Let K be a field. We define the resultant $\operatorname{Res}(f, g)$ as follows. Write

$$
f(x)=b \prod_{i=1}^{m}\left(x-\alpha_{i}\right), g(x)=c \prod_{j=1}^{n}\left(x-\beta_{j}\right)
$$

with $b, c \in K^{*}$ and β_{i}, γ_{j} in some algebraic closure of K. Then

$$
\operatorname{Res}(f, g):=b^{n} c^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

(a) Let $h(x)=x^{2}-3$. Calculate $\operatorname{Res}\left(h(x), h^{\prime}(x)\right)$.
(b) Let $t(x)=x^{2}-x-1$. Calculate $\operatorname{Res}\left(t(x), t^{\prime}(x)\right)$.
(c) Compare your answers to 2(b) and 3(b).
5. Let f and g be as above and suppose that g is nonconstant. Show that

$$
\operatorname{Res}(f(x), g(x))=b^{n} \prod_{i=1}^{m} g\left(\alpha_{i}\right) .
$$

6. Let f be as above and assume that its leading coefficient b is 1 and that the degree of f is at least 2. Show that

$$
\operatorname{Res}\left(f(x), f^{\prime}(x)\right)=\prod_{\substack{1 \leq i, j \leq m \\ i \neq j}}\left(\alpha_{i}-\alpha_{j}\right) .
$$

7.

(a) Let $K \subseteq L$ be a separable field extension with $L=K(\theta)$ for an algebraic θ with minimal monic polynomial $f(x)$ over K. Show that for $a \in K$, we have $N_{L / K}(a-$ $\theta)=f(a)$.
(b) Let ξ_{p} be a primitive p-th root of unity for a prime number p. Show that $N_{\mathbb{Q}\left(\xi_{p}\right) / \mathbb{Q}}(1-$ $\left.\xi_{p}\right)=p$.

