Math 531 Problem Set \#2 Due 9/15/04

1. (a) Suppose that α is integral of degree 2 over \mathbb{Z} and that there is a basis m_{1}, m_{2} for $\mathbb{Z}[\alpha]$ over \mathbb{Z} such that

$$
\begin{aligned}
& \alpha m_{1}=m_{2} \\
& \alpha m_{2}=-m_{1}+m_{2} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by α.
(b) Suppose that β is integral of degree 2 over \mathbb{Z} and that there is a basis m_{1}, m_{2} for $\mathbb{Z}[\beta]$ over \mathbb{Z} such that

$$
\begin{aligned}
& \beta m_{1}=m_{2} \\
& \beta m_{2}=5 m_{1} .
\end{aligned}
$$

Find the quadratic integral equation satisfied by β.
2. Let T be an $n \times n$ matrix with coefficients in a ring A. Show that there is a matrix U for which $U T=(\operatorname{det} T) I$.
3. Let A, B, and C be rings with $A \subset B \subset C$. Show that if B is integral over A and C is integral over B, then C is integral over A.
4. (Ex. 4, p. 7) Let d be a squarefree integer. Show that the integral closure of \mathbb{Z} in $\mathbb{Q}[\sqrt{d}]$ is

$$
\mathbb{Z}[\sqrt{d}] \quad \text { if } \quad d \equiv 2,3 \quad(\bmod 4)
$$

and

$$
\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] \quad \text { if } \quad d \equiv 1 \quad(\bmod 4) .
$$

5. (a) Let $\phi: A \longrightarrow B$ be a mapping of rings. Show that for any prime ideal \mathcal{P} in B, the ideal $\phi^{-1}(\mathcal{P})$ is a prime ideal in A.
(b) Give an example of a surjective ring homomorphism $\phi: A \longrightarrow B$ for which there is a prime ideal \mathcal{P} of A such that $\phi(\mathcal{P})$ is not a prime ideal.
6. (a) Give an example of a mapping of rings $\phi: A \longrightarrow B$ for which there is an ideal I of A such that $\phi(I)$ is not an ideal.
(b) Let $\phi: A \longrightarrow B$ be a surjective mapping of rings. Show that for any ideal I of A, the set $\phi(I)$ forms an ideal in B.
(c) Let $\phi: A \longrightarrow B$ be any mapping of rings. Show that for any ideal J of B, the set $\phi^{-1}(J)$ forms an ideal in A.
7. Let $A \subset B$ where A and B are domains and let K be the field of fractions of B. Show that if B is integrally closed over A in K, then B is integrally closed over itself in K.
8. (Ex. 4, p.3) Show that if S is a multiplicative set not containing 0 in a Noetherian integral domain R, then $S^{-1} R$ is also a Noetherian integral domain.
