## Math 531 Problem Set \#13 Due 12/08/00

1. Let $\mathcal{O}_{L}$ be ring of integers in a quadratic number field $L$. Let $p \mid \Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$. Show that

$$
\left(\frac{\mathrm{N}_{L / \mathbb{Q}}(\alpha)}{p}\right)=1 \text { or } 0
$$

for every $\alpha \in \mathcal{O}_{L}$.
2. Let $\mathcal{O}_{L}$ be ring of integers in a quadratic number field $L$. Suppose that there is some $p \mid \Delta\left(\mathcal{O}_{L} / \mathbb{Z}\right)$ such that $p \equiv 3(\bmod 4)$. Show that there does not exist any $\alpha \in \mathcal{O}_{L}$ such that $\mathrm{N}(\alpha)=-1$.
3. Let $\mathbb{P}_{\mathbb{Q}}^{n}$ be the set

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \mid x_{i} \in \mathbb{Q},\left(x_{0}, \ldots, x_{n}\right) \neq(0, \ldots, 0)\right\} / \sim
$$

where $\sim$ is the equivalence relation

$$
\left(x_{0}, \ldots, x_{n}\right) \sim\left(y_{0}, \ldots, y_{n}\right)
$$

if there exists $\lambda \in \mathbb{Q}^{*}$ for which $x_{i}=\lambda y_{i}$ for $i=0, \ldots, n$. We define the height function $H$ as

$$
H\left(x_{0}, \ldots, x_{m}\right)=\left(\prod_{p \text { prime }} \max _{i}\left(\left|x_{i}\right|_{p}\right)\right) \max _{i}\left(\left|x_{i}\right|\right)
$$

where $\left|x_{i}\right|_{p}=p^{-v_{p}(x)}$ for $v_{p}$ is the $p$-adic valuation, when $x_{i} \neq 0$ and $\left|x_{i}\right|_{p}=0$ if $x_{i}=0$. Show that $H$ is well-defined with respect to $\sim$ defined above.
4. Show that $|x+y|=\max (|x|,|y|)$ for a nonarchimedean $|\cdot|$ when $|x| \neq|y|$.
5. Write out the 2 -adic representation for $1 / 3$, using 0 and 1 as representatives for the residue classes of $\mathbb{Z}_{2} / 2 \mathbb{Z}_{2}$.
6. Ex. 1, p. 99.
7. Ex. 2, p. 99.
8. Ex. 4, p. 99.

